
2    D ece m b er 20 13  Vo l . 3 8 N o. 6 	 www.usenix.org

EDITORIALMusings
r i k f a rr o w

Rik is the editor of ;login:.
rik@usenix.org A s often is the case, I find myself musing about the state of computer

security. Although there certainly is no easy answer to fixing our
insecure systems, I’ve come across a wonderful analogy, thanks to a

NOVA (US public television science) show: “Why Ships Sink” [1].

For ships at sea, as well as airplanes, the answer is often simple: human error is at least par-
tially to blame. But nothing is as simple as it may first appear.

Bulkheads
By the time the Titanic sailed, ship designers included bulkheads in their designs. These
bulkheads separated the region below the waterline of a ship into separate compartments.
The goal for these compartments was to limit flooding if two ships collided. The bow of most
ships also included a separate compartment, the peak tank that was designed to both crumple
and contain any flooding from a collision.

As we all know, Titanic’s bulkheads failed rather dramatically. Instead of taking days to sink,
Titanic took just hours [2]. The bulkheads were not actually watertight but could be, and
were, overtopped by flooding. And these compartments were designed under the assump-
tion that a ship would be holed in, at most, two compartments, and then only if a collision
occurred right at the boundary between the two compartments.

The sinking of the Oceanos [3] provides another vivid example of the failure of watertight
bulkheads. Ship designers had done a much better job by this time, having learned from the
Titanic’s failure. But humans could easily foil this design. In the case of Oceanos, partially
completed maintenance allowed a leak that started in the engine room to pass through a hole
in a bulkhead into the sewage waste disposal tank, and from there, into the rest of the ship
via toilets, sinks, and showers. A check valve that would have stopped the backwards passage
of water through the waste lines had been removed and not replaced, leading to the sinking of
the ship in rough seas off the coast of South Africa.

I certainly find it interesting how both of these examples included assumptions in design and
compounded them with the actions of humans.

Computer Security
We have bulkheads, of a sort, in most of our computer systems. Memory management
separates access to the memory of one process by other processes. And there are “rings” of
protection, with the kernel running in the innermost ring, any VMs and possibly device driv-
ers running in the next one or two levels, and user processes running in the outermost ring
[4]. Hardware enforces these rings, so we can imagine them functioning as bulkheads within
our computer systems, designed to prevent exploitation, rather than flooding. Attacks at the
outermost ring should not impact inner rings.

Like the Titanic, which had doors in its bulkheads, CPUs also have “doors” between rings.
These provide access to privileged routines—for example, allowing an editor to access blocks
on a disk or a Web browser to read data from a network connection. We call these doorways
system calls, but at the hardware layer they are software interrupts that cause execution to

www.usenix.org	   D ece m b er 20 13  Vo l . 3 8 N o. 6  3

EDITORIAL
Musings

switch between the application that executed the interrupt and
the interrupt or trap handler at an inner ring. This handler uses a
value to index into the table of system calls.

System calls provide an entry point into the inner rings, and
the innermost ring has access to all memory and all hardware.
Behind the system call is what provides the weakness in the
design: the operating system itself. Operating systems are giant
concurrent programs that have several important features: they
are crucial for the proper functioning of systems, they are large,
and they are difficult to write.

As it turns out, kernel exploits have become one of the most
common methods for escalating privilege on *nix systems. In the
pre-Internet days, set-user-id (SUID) programs owned by the
root were the most popular means for privilege escalation. As the
Internet became widely used, root-run network services became
more popular targets. And later, largely because of the awareness
that both SUID root and root-run network services were danger-
ous, the numbers of both have decreased over time. There still
are many SUID root programs, though not as many as there once
were. And the number of root-run network services has declined
dramatically. Also, kernel developers have designed kernel-
based mechanisms, such as capabilities and SELinux, that can
limit the scope of what SUID programs and network services are
permitted to do.

That leaves the kernel as a huge program with a complete set of
privileges and no limitations. Any code running at ring 0 has
complete access to the system, making the kernel a juicy target.

According to conversations with people who run lots of Linux
systems, the usual path to exploitation is to gain access to a
system through theft of an account, then to use a kernel exploit
to gain total control over the system in question. Often, the next
step is to install trojan SSH/SSHD programs, so the attacker can
steal more accounts.

Our watertight bulkheads are no more watertight, or better
designed, than the Titanic’s.

The Lineup
We start off this security-focused issue with an article by Jon
Howell and friends. Jon and his cohorts have published two
papers about Embassies, and after some badgering they have
completed an article about their new notion of how Web brows-
ers should work. Instead of building many different brows-
ers that are more like operating systems with lots of leaky
bulkheads, they have built a system that runs complete binary
applications within a Web browser. Unlike systems such as XaX
[5] and Native Client [6] that came before them, Embassies does
not require extensive code revisions in applications. Instead,
Embassies does something I imagined (and wrote about [7])
many years before. Embassies uses a special library as a replace-

ment for libc and ntdll.dll that provides an extremely limited sys-
tem call interface to applications. In essence, Embassies reduces
the number of openings left in the bulkheads between applica-
tions and the kernel to less than ten, far from the hundreds (to
thousands) of system calls found today.

Sarah Meiklejohn and her associates wrote about Bitcoin. In
their research, they used bitcoins to make online purchases, and
through analyzing information used in these transactions, were
able to group a goodly fraction of all Bitcoin addresses to a num-
ber of well-known entities, such as Mt. Gox and Silk Road. Their
work shows that bitcoin transactions are not as anonymous as
you might think, and the authors do a great job of explaining both
their research and how Bitcoin works.

I interviewed Ben Laurie because a friend had pointed out that
he had strong views about Bitcoin. Of course, Ben spends most
of his time working to make the Internet safer, through his cur-
rent work on Certificate Transparency [8]. I did get to ask Ben
for his thoughts about digital currencies in general, and Bitcoin
in particular.

At Crispin Cowin’s request, I asked Istvan Haller and his co-
authors to write about their smart fuzzer. Crispin had just been
awarded the Test of Time for his work on stack canaries, and he
told me this was his favorite work at the 2013 Security confer-
ence. Haller et al. combine previous work into a technique that
zeroes in on areas within programs that are the best places to
find buffer overflows, which is still an issue after all these years.

Although people presented a lot of other exciting research dur-
ing Security ’13, I chose only one other workshop paper for this
issue. Mohammad Karami and Damon McCoy had researched
DDoS for hire, and presented a workshop paper about this during
LEET. I found what they had uncovered fascinating: for a small
monthly fee, you can have a service DDoS the IP address of your
choice with up to hundreds of millions of packets per second.

Justin Troutman had long been promising me an article about a
new framework for cryptography. He and Vincent Rijmen (best
known for his part in developing AES) have been researching
how best to build a cryptographic framework that works well for
both developers and end users. Today, cryptographic APIs leave
developers with too many choices to make, choices that should
instead be made by cryptographers who understand the theory
behind how cryptographic primitives should be used. And most
cryptographic libraries result in programs that are difficult for
end users to use properly. So instead of having developers mak-
ing design mistakes to produce programs that end users cannot
simply use correctly, Troutman and Rijmen’s goal is to create a
“green” framework that solves both of these problems.

Phil Pennock contacted me, after some urging by Doug Hughes,
about problems he has with how people perceive PGP. Phil runs a

4    D ece m b er 20 13  Vo l . 3 8 N o. 6 	 www.usenix.org

EDITORIAL
Musings

keyserver and is a code committer, so he is well situated to com-
ment on PGP. Phil tells us that PGP cannot do many of the things
that people expect it to do, for example, prevent traffic analy-
sis. In fact, PGP makes traffic analysis simpler. Phil goes on to
explain things you need to know if you want to use PGP properly.

David Lang continues with his series of articles about enterprise
logging. David explains how to use the Security Event Correlator,
SEC, as a tool for monitoring logs. I had long found SEC a com-
plicated and hard to understand tool, and am glad that David has
taken the time to carefully explain how to use some of its most
important features.

James Plank has written a survey of erasure codes for storage
systems. Most of us are at least somewhat familiar with RAID,
a system that in most configurations relies on erasure coding to
create a more durable storage system. Jim has presented many
papers about erasure coding at FAST workshops, and does a
great job in this article of explaining the different ways erasure
coding works, and how to measure the effectiveness of erasure
coding. Although you might think this is a topic that you don’t
need to understand, you will understand both erasure coding
and RAID much better if you do read his article.

David Blank-Edelman has written about the command line.
Sound boring? Well, it’s not, as David provides helpful Perl
modules and information that makes it easy to parse com-
mand lines, and strongly suggests that you not go and build yet
another wheel.

David Beazley explains Python packages and what takes the
place of main() in Python scripts. I often wondered about this,
and, as usual, David provides lots of clear examples of how to
access functions within packages as if they were the entry func-
tion in a C program.

Dave Josephsen writes to us from the wilderness about his
adventures. Well, he only wrote a little bit about hiking in the
Rockies, and spent most of his column extolling the useful-
ness of Go. Dave has discovered that by programming in Go, he
has been encouraged to use Git, add network interfaces, think
about concurrency, and embrace types and data structures.
That’s pretty amazing for both a computer language and a cur-
mudgeon like Dave.

Dan Geer and guest co-author Michael Roytman point out
that using guesstimates of a vulnerability’s likelihood of being
exploited makes no sense at all. They share charts and data
with us to prove that calculated measures of exploitability do

not match up with the vulnerabilities actually exploited, and
provide suggestions for doing a better job of deciding what is
most vulnerable.

Robert Ferrell gets serious about security in his column. Not
that he isn’t still being funny, but Robert makes a number of very
good points, similar to points I was hearing in hallway talk dur-
ing the Security Symposium.

Elizabeth Zwicky reviewed five books this time, three on
management and two on data analysis. Mark Lamourine
reviewed three short books on Vagrant, Git, and Puppet types
and providers.

We have many more pages of summaries than we can print, all
from the 2013 Security Symposium and the workshops during
that week. If you have ever wondered why some things get sum-
marized and others don’t, summarizing is a volunteer activity.
We do ask any person who has received financial assistance to
attend USENIX events to summarize, but we do not force them
to summarize. We have learned from experience that the best
summaries come from interested participants who have a desire
to write summaries.

That said, the volunteers managed to cover all of the Symposium,
HotSec, WOOT, LEET, and parts of CSET and HealthTech. We
also strive to post the summaries to the ;login: portion of the
USENIX Web site as soon as they have been edited, copyedited,
and typeset, and you will often be able to find summaries weeks
before they appear in print.

One of the more interesting things I’ve heard recently about
security (which doesn’t seem that new at all) is that you don’t
need to wonder whether your systems will be exploited; you need
to notice when they have been. If you read the October issue’s
“For Good Measure” column, you may recall that in the Verizon
Data Breach Investigations Report, 80% of data breaches are
discovered by some unrelated third party. Geer and Pareek also
reported that 65% of the people they survey reported discovering
an attack aimed at some other party.

Perhaps we need to quit worrying about the security of our
systems, start monitoring for signs of a successful exploit, and
keep our incident response teams ready for the emergency that
might sink our already leaky ships. We don’t have watertight
bulkheads, but Titanics cruising serenely along into a night sea
scattered with icebergs.

www.usenix.org	   D ece m b er 20 13  Vo l . 3 8 N o. 6  5

EDITORIAL
Musings

References
[1] Nova on “Why Ships Sink”: http://www.pbs.org/wgbh/
nova/tech/why-ships-sink.html.

[2] Watertight compartments on the Titanic: http://www
.titanic-titanic.com/titanic_watertight_compartments.
shtml.

[3] Sinking of the Oceanos: http://en.wikipedia.org/wiki/
MTS_Oceanos.

[4] Rings for computer security: http://arstechnica.com/
security/2009/03/storm-over-intel-cpu-security-could-be
-tempest-in-a-teapot/.

[5] John R. Douceur, Jeremy Elson, Jon Howell, and Jacob
R. Lorch, “Leveraging Legacy Code to Deploy Desktop
Applications on the Web,” Proceedings of the 8th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI), December 2008, pp. 339–354.

[6] Native Client: http://code.google.com/p/nativeclient/.

[7] Rik Farrow, “Musings,” ;login:, vol. 32, no. 4,
2007: https://www.usenix.org/publications/login/
august-2007-volume-32-number-4/musings.

[8] Certificate Transparency: http://www.certificate
-transparency.org/.

Do you know about the USENIX Open Access Policy?

USENIX is the first computing association to offer free and open access
to all of our conferences proceedings and videos. We stand by our mis-
sion to foster excellence and innovation while supporting research with
a practical bias. Your membership fees play a major role in making this
endeavor successful.

www.usenix.org/membership

Please help us support open access.
Renew your USENIX membership

and ask your colleagues to join or renew today!

