
2    AU G U S T 20 14  VO L . 3 9, N O. 4 	 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org I’ve often dreamed of presenting security as a visualization: images that

could clearly convey the dangers represented by different levels of access.
My visualization would work so well that even non-technical people

would easily understand the relative risks of different attacks. Alas, my skills
are lacking when it comes to designing images. But I can write.

Several of the articles found in this issue inspired me in this direction. During my interview
with Steve Bellovin, he spoke of walls and gates, nice solid visual metaphors. Sergey Bratus
(and others) wrote of the lack of well-defined terms for describing offensive technology, and
I certainly agree: the terms we have are often abused and misunderstood. Pete Johnson pro-
vided the allegory of a knight being challenged by a gatekeeper before being granted access.
No wonder I am thinking in Technicolor.

Beige
Of course, then there’s beige, the color of the first IBM PC. These early workstations shared
something with their still extant bigger cousins, the mainframes, in terms of access. Rather
than a PC, picture a 1970s era mainframe. Got it? Okay, I bet you are visualizing men with
pocket protectors and a woman in high heels standing in front of tape drives. The tape drives
were much more impressive than the actual mainframes, which were mostly featureless cabi-
nets, often beige or gray. My favorites included lots of blinking lights, including ones attached
to memory address lines.

Computer security was equally easy to visualize in that era: physical walls. The mainframe
was secured within a special room, and you needed to gain access to that room if you wanted
to steal or modify the data, a lot of which was stored on those magnetic tapes. The same was
true for PCs for many years, as these were all standalone devices. Not that some mainframes
didn’t have terminal communication concentrators for remote access, but getting to the data
still meant that someone in the secured room would need to heed your request to mount a tape.

The Network
By the end of the ’80s, the real era of networking was just beginning. We have to see beyond
the walls and locked doors and be able to visualize access to computers in a completely dif-
ferent way. In this case, I always wanted to see something right out of Gibson’s Neuromancer,
where corporate computers were protected by industrial grade “ice”: defenses that could,
and had, killed intruders. Somehow, Gibson’s metaphoric ice was quite visual for me and, I
presume, most others who read Neuromancer.

But translating ice into something that actually corresponds nicely with the real world of
TCP/IP was much more difficult. In that world, what you can see from the network are open
or closed ports, and the ice may or may not be visible as firewalls, and later, intrusion detec-
tion systems.

Still, one could have a nice visual representation, in textual form, by using Fyodor’s Nmap
(nmap.org). As Nmap grew in features and capabilities, you could learn not just which ports
were open, but what version of server software was running attached to a port, as well as

www.usenix.org	   AU G U S T 20 14  VO L . 3 9, N O. 4  3

EDITORIAL
Musings

what operating system supported the software. As real power
goes, Nmap still is an incredible tool for visualizing a target
textually, but it falls short of Gibson’s ice.

We could use (or abuse) Bellovin’s walls and gates: Each server
is represented by a wall, penetrated by gates that are the open
ports. The gates are labeled with the name and version of the
service that appears there. I once tried to get a firewall company
I was advising to color-code services, from “green” (fairly safe) to
“red” (never safe), but they demurred. As this is my vision, I will
take another tack at labeling the gates: Ports for insecure ser-
vices appear as screen doors, while ports for much more secure
services look like bank vaults. Too bad that OpenSSL’s bank
vault door turned out to have a backdoor in it, while appearing
quite impressive.

Virtual Walls
Within anything we think of as a computer these days, includ-
ing smartphones, tablets, desktops, mainframes, and servers
within clusters, we also have gates and walls. Steve said, in his
interview, that “strong walls are something we’re pretty good
at … [but] components have to talk to each other, which implies
gates.” I’ve railed for years about the walls we’ve inherited,
since the earliest multiprocessing system designs, and won’t
go there this time. I will point out that the walls are memory
management, used to isolate processes from one another, and
various rings of privilege accorded to the operating system by
CPU hardware. The most prosaic of these gates are system calls,
which allow an unprivileged process to ask the kernel to perform
work on the process’s behalf. And, as our hardware became more
powerful, the number of walls and gates increased as we added
virtualization to both hardware and the software that runs on it.

Even here, a bit of visualization might still prove useful. The
kernel is like a castle, with a single gate: There is just one way in
and one way out, via this gate. Or is there? I’ll have more to say
about that later, but for now, imagine a castle with an impres-
sive gate. Processes only virtually enter this gate, as the kernel
carries out activities vicariously, that is, the proper incantation
made at the gate results in the kernel completing some activity
and then sharing the results with the process waiting outside the
gate. And, while all processes must use the gate, the processes
can only interact via the kernel, via the gate of the system call
interface.

If you’ve followed me so far, you are standing outside a castle,
among a throng of other busy and eager processes, many clamor-
ing for attention from the gatekeeper. Now that our kernels are
multithreaded, it’s as if there are many gatekeepers as well, all
doing their best to respond to requests so that the processes are
not held up. And even if the processes want to communicate with
each other, they still must talk to the gatekeeper.

Inside the castle of the kernel, all access is allowed. It is as if the
kernel is imbued with a magical quality that provides this level
of access—because the kernel has total access. The side effect
of this access is that any mistake in the hugely complex kernel
can result in sharing this all-powerful access with any evil coder
with the right spell: a kernel exploit.

Also, not all processes are treated equally: Even services have
their 1%. In the realms of Linux and UNIX, root-owned pro-
cesses have increased privileges within the castle. In the Win-
dows world, root gets replaced with sets of privileges, mimicking
the world of DEC’s VMS with both finer control and much more
complexity. And although not everyone can be one of the elite,
even mere users have resources that exploits can use to abuse or
abscond with the user’s private data.

Fuzzy Picture
But the castle gate isn’t the only way in. I’ve already mentioned
the network, where each open port is like another open gate, each
with a completely different set of guards, composed of policy and
implementation. Lots can go wrong here, but the main point to
keep in mind is that while it might be nice to imagine our castle
having only a single entry gate, that’s a false image.

And then there are other openings in the wall. In a wonderful
presentation, Bill Cheswick described classic castle designs,
based on visits he had made to real castles in Europe. But Ches
went beyond these descriptions, to the story of the castle that
fell because the invaders used a small back door, the one used for
convenience by the castle’s defenders to visit the town outside.

In my visualization, convenient backdoors look very much
like USB ports. Even more than the system call interface, the
USB interface is very complicated as it involves both parsing
responses to a protocol and running the device driver of the USB
device’s choice. We all know this attack vector has been used
successfully already (Stuxnet), and these convenient backdoors,
available to any local attacker, or one that can trick a user into
inserting a USB device, make our castle wall look more like
Swiss cheese. So much for policy controlled gates.

Personally, I think we need more walls within our castles. At the
very least, the gates themselves need to be run within isolated
regions, because they too are complicated enough to be exploited.

The Lineup
We begin this issue with an opinion piece by Sergey Bratus, Iván
Arce, Michael Locasto, and Stefano Zanero. These men were
disturbed by the creation of new laws to regulate the creation,
sharing and use of offensive software. Because we have yet to
clearly define what exactly we mean by offensive software, new
laws, and ones yet to be written, are vague and overreaching. The
authors argue for the creation of clearly defined language that

4    AU G U S T 20 14  VO L . 3 9, N O. 4 	 www.usenix.org

EDITORIAL
Musings

will make writing and talking about offensive software, includ-
ing exploits and vulnerabilities, much clearer and more precise.

I asked Pete Johnson, who had a paper published earlier this
year on USB insecurity, to write and explain what’s wrong
with USB. Pete does a very nice job of explaining how the USB
protocol works, as well as how it fails, both through allegory and
diagrams.

I’d heard that Stefan Lüders had made presentations about how
they handle security at CERN, and I asked him to tell us about
that. CERN works with thousands of staff, visitors, and external
researchers, which certainly makes security a daunting affair
with almost everyone bringing their own device (BYOD). CERN
works with people to secure their own devices, as well as educate
their owners, but CERN also keeps a stick handy so warnings of
failed security cannot be ignored.

Raluca Popa and her co-authors rewrote their NSDI paper on
how to secure content on Web servers using encryption. Their
solution, in a nutshell, is to handle encryption within the users’
Web browsers, moving it away from a Web server that can be
subverted or subpoenaed. They have also devised a method that
allows searching of stored data on the Web server without shar-
ing keys or using homomorphic encryption.

Chen Chen and his colleagues also rewrote their NSDI paper,
and explain how TPM 2.0 can be extended to work through
clouds and shared devices. Ordinary TPM can only perform
tasks, such as signing a hash or encryption using a stored private
key, on the device where TPM is installed. By using a small
extension to TPM 2.0, Chen et al. explain how TPM can be
leveraged to make sharing encrypted data between devices and
clouds work securely.

I decided to interview Steve Bellovin for this issue. Steve has
been a figure at USENIX meetings since the UNIX User Group
changed its name to USENIX. Steve has also become well known
in security through his research, his firewalls book, RFCs, and
public speaking. I uncover some of the back story behind many of
these accomplishments.

Dilma Da Silva has written an introduction to the Computer
Research Association’s Committee on the Status of Women in
Computing Research (CRA-W) group. CRA-W has done much
to help women and minorities succeed in getting into graduate
school, publishing, and advancing in their careers. And as Dilma
points out, papers with a diverse group of authors tend to get
cited more often, implying that the level of creativity and quality
is often higher than other paper-writing groups.

Abe Singer volunteered to write about hostbased SSH, a tech-
nique he has been using for many years. Although hostbased
SSH is not new, it is also often ignored, or at least unknown. Abe

explains how hostbased SSH works, why it is better than other
techniques, and where it is best used.

Jason Paree writes about event management, a nice term for
“handling communications when things go wrong.” Instead of
the usual way of having too many open lines of communica-
tion, which often results in miscommunication and duplicated
effort, Paree describes his own group’s progress in centralizing
communication, documenting, and managing events. For those
of you interested in DevOps, event management is an important
part of DevOps and getting your process under control.

Andy Seely writes from a manager’s perspective about fixing a
perception problem: that a part of IT is someone else’s problem.
Andy actually describes solving a DevOps issue, something I
finally recognize after having read The Phoenix Project (see my
book review). Like the fictional VP of IT in that book, Andy steps
in to first understand the problem with one group, get other
groups who actually support this group to buy in, and then
reorganize to make the changes official.

David Blank-Edelman writes the second of a two-part column
about ZeroMQ, a modern message queuing system that simpli-
fies communication between processes, whether on the same
system or across a network.

Dave Beazley tackles parsing command line options in Python.
Dave begins with a confession, then demonstrates what some
of the popular Python modules can do to make parsing options
easier.

Dave Josephsen follows a tradition of successful authors who
describe the seven habits of successful somethings. Dave, no
surprise, explains the seven habits of successful monitoring,
starting by telling us that it’s about the data, not the tools.

Dan Geer and Joshua Corman take on the myth of the many
eyes. The theory has been that open source software should be
safer than closed source, but recent discoveries in security-crit-
ical open source projects provide fodder for Geer and Corman’s
investigation.

Robert Ferrell rants about the wonders of various Web tags,
including the “Do not track” tag. Along the way, he casts a keen
eye on other (current in late May) Internet memes, including
Tara the cat, and what it really means when the US indicts five
Chinese for stealing IP using the Internet.

Mark Lamourine has tackled a book about understanding the
theory of computation. I finally read The Phoenix Project and
really gained a better understanding of DevOps (and more) from
it. I also review a beginner’s book on penetration testing that is
quite good.

www.usenix.org	   AU G U S T 20 14  VO L . 3 9, N O. 4  5

EDITORIAL
Musings

We close out this issue with the summaries from NSDI ’14.

I’ve often visualized computer security in a way not so different
from the way I did in these musings. In this alternate scheme,
certain programs were red and all the rest were green. If you
could trick the red programs into running the code of your choice
or accessing resources they were never intended to access, you
could imbue your exploit with the color red. The red programs
were root-owned processes, set-user-id root programs, and the
kernel. Everything else was green by comparison to the power of
root, or comparatively privileged parts of Windows.

While we continue to heap praise upon those who manage the
feat of separation of privilege (Venema and Bernstein), we keep
building monolithic applications with no such separation. Unless
we can actually learn how to become designers and program-
mers who can build carefully limited modules with clear inter-
faces, we really won’t have much use for walls and gates.

Become a USENIX Supporter and
Reach Your Target Audience

The USENIX Association welcomes industrial sponsorship and offers custom packages to help you
 promote your organization, programs, and products to our membership and con ference attendees.

Whether you are interested in sales, recruiting top talent, or branding to a highly targeted audience, we
offer key outreach for our sponsors. To learn more about becoming a USENIX Supporter, as well as our
multiple conference sponsorship packages, please contact sponsorship@usenix.org.

Your support of the USENIX Association furthers our goal of fostering technical excellence and innovation
in neutral forums. Sponsorship of USENIX keeps our conferences affordable for all and supports scholar-
ships for students, equal representation of women and minorities in the computing research community,
and the development of open source technology.

Learn more at:
www.usenix.org/supporter

