
File SystemS

6    F eb rua ry 20 14  Vo l . 3 9, N o. 1 	 www.usenix.org

A Saga of Smart Storage Devices
An Overview of Object Storage

M a t t h e w W . Be n j a m i n , C a s e y B o d l e y , A d a m C . E me r s o n ,
a n d M a r c u s W a t t s

Object storage systems have become quite popular, with implemen-
tations ranging from Amazon’s S3 to backends for NFSv4.1. We
describe the history of object storage, the practice and standards in

use today, and work being done by groups such as the Ceph project, as well as
some of our own development.

Object storage fills a gap between block storage and file systems. Simple block storage con-
sists of fixed-size blocks as provided by traditional disk drives. Blocks can be accessed ran-
domly but must be allocated by some scheme. Most modern file systems provide a directory
hierarchy that contains variable length byte-array “files” as the leaves. Modern network appli-
cations frequently need a higher abstraction than can be provided by simple block storage, yet
don’t need all the complexity and limitations of a traditional file system. Object storage fills
this gap by providing for larger variable-sized segments and a simple flat-naming scheme.

The most common object abstraction provides one or more collections of uniquely named
objects of arbitrary size associated with some amount of metadata. Object storage tends to
emphasize getting or putting entire objects, rather than reading and writing byte-ranges as
is more common in file systems.

We will talk about object storage systems as two groups, which we will call the “device-like
family” and the “HTTP-like family.” The device-like family exposes a cluster of individual
devices to clients. One example of device-like objects is the SCSI T10 object standard. The
HTTP-like family presents a single interface, hiding details of how data is distributed. The
best-known example of the HTTP-like family is Amazon’s S3.

History and Character
Our two divisions of object storage grew up independently but have crossed over and stimu-
lated each other.

The Device-Like Family
The modern device-like object storage paradigm traces back to work by Garth Gibson and
others on the NASD (Network Attached Secure Disks) project at CMU, whose goal was the
creation of a scale-out storage system. They designed intelligent drives storing variable-
length objects with access being granted by a cacheable token; this allowed scale-out similar
to a SAN but without clients having to be involved with actual block allocation, and so allow-
ing disk devices to perform on-platter optimization [3]. In NASD (and its direct descendant
PanFS) the file server was responsible for assigning objects to devices; NASD used a middle-
ware to stripe virtual objects across real devices. Even in the beginning, objects were used
for more than just building file systems. For example, the NASD project built a distributed
streaming MPEG2 server. The SCSI T10 committee standardized the Object Storage Device
command set (drawn from the NASD model), a second version has been finalized (OSDv2),
and a third is currently in development.

Matt Benjamin is chief architect
of CohortFS, and a founder
of CohortFS, LLC. Matt is a
contributor to numerous open
source software packages

and tools, including the NFS Ganesha and
OpenAFS. Matt holds a master’s degree from
the University of Michigan, and a bachelor’s
degree (summa cum laude and Phi Beta
Kappa) from the University of Missouri.
matt@cohortfs.com

Casey Bodley studied computer
science at Eastern Michigan
University. He then worked
for the Center for Information
Technology Integration at the

University of Michigan to develop a Windows
client for NFSv4.1. He joined the CohortFS
team in 2012, and has been working on parallel
metadata enhancements to Ceph.
casey@cohortfs.com

Adam C. Emerson studied
mathematics at the University
of Michigan. While at CohortFS
he has worked on the Ganesha
NFS server, especially

improving support for NFSv4.1 and pNFS.
He also collaborated in the CohortFS design
process for data placement, encryption, and
metadata striping. aemerson@cohortfs.com

Marcus Watts is a programmer
at CohortFS. He previously
worked for a large education
institution where he worked
with AFS and identity

management. Way back when, he wrote a
computer conferencing program, PicoSpan,
which was the basis for the Well in California.
mdw@cohortfs.com

www.usenix.org	   F eb rua ry 20 14  Vo l . 3 9, N o. 1  7

File Systems
A Saga of Smart Storage Devices

Further research in the device-like family of object storage
focused on decentralizing placement of objects on devices [4].
Other work included scaling objects to more devices as the
amount of storage grew, and responding to failures and grace-
fully reorganizing data as devices were added or removed, as in
the RUSH [5] family of algorithms. The Ceph project builds on
previous work, with a cluster of OSDs cooperating to perform
automatic replication, recovery, and snapshots.

CleverSafe implements its own object storage system (with a
proprietary protocol) where object names are effectively hierar-
chical addresses within a cluster. CleverSafe makes heavy use
of Cauchy Reed-Solomon erasure codes [7] for fault tolerance as
well as information dispersal. Information dispersal starts with
a piece of data and derives multiple chunks from it, some number
of which are needed to reassemble the original. CleverSafe
optionally performs encryption, integrity, and compression as
part of the write operation.

The HTTP-Like Family
The most successful (and current de facto standard) represen-
tative of the HTTP-like object storage family is Amazon’s S3,
which, like the Elastic Compute Cloud, was launched to expose
and sell access to the global infrastructure Amazon developed
to run its own business. S3’s operations (getting, putting, and
deleting, generally of entire objects at once) fall naturally out
of the common REST architecture, which structures APIs
around the standard methods of HTTP [2]. This gives S3 a
high-level abstraction free from many assumptions or implied
structures, similar to T10 OSD. S3 provides a flat namespace of
objects within “buckets,” which both partition objects into flat
namespaces and dictate policy.

S3 has been enormously successful, not just as a service but as
an API, and it has been adopted by other cloud service provid-
ers and by software such as the CloudStack framework and the
Eucalyptus cloud computing system.

OpenStack’s Swift service fills a similar niche. Even though
it provides storage implemented by members of a cluster to
members of that cluster, all requests go through an HTTP proxy
server that hides the details of distribution and abstracts away
the clustered nature of access from the client.

Hybrid Models
As both these families have been developed, they’ve borrowed
from each other. Ceph’s RADOS protocol implements object
pools that function much like S3’s buckets, and they map directly
onto buckets in the RADOS Gateway, a Web service that hides
the clustered nature of Ceph behind a Web proxy.

Huawei’s Universal Data Storage goes one step further, selling
hardware (clusters of smart disk drives) that speaks S3 to clients
while providing enterprise functionality and management.

Anonymity Networks
Anonymity networks such as Freenet and GNUnet have con-
verged on the object-like semantics of publishing and retrieval
of blobs of data in a flat namespace on a wide-scale cluster.
Clients interact with the individual nodes on the peer-to-peer (or
friend-to-friend) network, but may have their interactions with
the ultimate endpoints obscured by layers of onion routing and
cover traffic depending on their security settings. New designs
(referred to in GNUnet documentation and source as “multicast”)
for trusted replication among peers allow HTTP-like functional-
ity, such as resilience or distributed service of resources in high
demand, while preserving anonymity and privacy.

Current Uses
Many object storage systems can be used as arbitrary key-value
stores with good performance for large values. T10 OSDv2 is
a notable exception as it uses 64-bit integers to name objects
within a partition; it requires an index, which may be imple-
mented in the object system, to link more interesting names to
integers. Object stores are also often used as building blocks for
richer systems.

Database Integration
BLOB (Binary Large OBject) fields store mostly uninterpreted
data in database records and have always been awkward due to
their large size, which can drive other data out of cache in the
database client. The BLOBs themselves are often served more
slowly than would be ideal since they have to be pulled through
that database connector interface. Many database programmers
address this by storing objects in files and then storing the file
names in the database.

One major downside of storing BLOBs as files is that most file
systems don’t offer the same reliability, integrity, or replication
features that cover data stored in the database. Developers are
using object stores and any replication and reliability that the
store in question might provide to get around this limitation.
Often the object will be named with a hash of the BLOB’s content
to provide implicit integrity checking and deduplication. This
approach has become so popular that it’s starting to become
integrated into database backends. OblakSoft’s Cloud Stor-
age Engine for MySQL introduces a “WEBLOB” field type that
integrates storage of BLOBs using Amazon’s S3 protocol directly
into the database. Using HTTP-accessible objects specifically
also allows Web assets to be displayed to a client by passing a
URL, without proxying the data through the application.

8    F eb rua ry 20 14  Vo l . 3 9, N o. 1 	 www.usenix.org

File Systems
A Saga of Smart Storage Devices

Streaming Storage
Video streaming from object stores was prototyped with MPEG2
on NASD but hit great commercial success with Netflix’s adop-
tion of Amazon S3 to back its streaming video service. This
has become successful enough that Amazon has pursued the
streaming market by adding RTMP access to S3 objects [1].

Virtual Machine Images
One of Ceph’s biggest current successes is the RADOS Block
Device. This is a set of conventions for organizing Ceph objects
into disk images that can then be booted from or mounted by
virtual machines in a cloud environment. This allows the use of
the object store’s capabilities, such as snapshots and replication,
to provide checkpointing and resilience. Snapshot layering pro-
vides a crude approximation (due to snapshots being read-only)
for copy-on-write storage and deduplication.

File Systems
OSDv2 is used by Panasas in PanFS and by the free ExoFS
project as the backing store for their file systems. Ceph follows
this same approach, building a file system on top of the RADOS
object access protocol.

The S3 FUSE utility builds a file system on top of cloud-based
storage, and Tahoe LAFS’s RAIC (Redundant Array of Inexpen-
sive Clouds) plans to build a highly reliable, secure file system
that straddles the object storage systems of multiple cloud pro-
viders for reliability in the event of a provider’s failure.

pNFS
T10 OSDv2-based object-backed file systems have been stan-
dardized as a scale-out and reliability component of NFSv4.1
through Parallel NFS (pNFS). pNFS introduces the concept of
recallable layouts to represent both permission to and details
on how to access data directly at the point that it is stored [8].
Clients then access back-end storage directly without going
through a front-end server. pNFS allows differing access pro-
tocols, like striping data over several NFSv4 servers, accessing
data as block ranges on SCSI devices, and arranging data in
recursive RAID configurations over T10 objects.

The OSD layout type lets clients be aware of, participate in, and
take advantage of replication and erasure coding. Clients can
read stripes from multiple devices for improved speed or perform
erasure coding at the time of writing.

Ceph
As Ceph is of current interest in the storage community, and
because we are basing much of our work on it, we give Ceph some
special mention.

Contrast with T10
Ceph’s architecture can be contrasted with that of T10 OSDv2.
Object storage devices in T10 are independent of each other
and under the control of some director that grants access
through security tokens. Replication occurs when clients write
the same data to several devices, and parity is calculated on the
client and written as normal data. How data and parity blocks
are distributed among devices is outside the scope of the T10
OSDv2 standard.

Ceph organizes object storage devices into a cooperative group
under control of a small number of servers called monitors. In
Ceph, monitors keep globally known data coordinated through
Paxos. Data is distributed over devices under the control of a
globally known collection of rules and data structures, which
are maintained consistently by the monitors. Administrators
describe the organization of storage devices, breaking them
down hierarchically into zones of potential failure. Administra-
tors also set the number of replicas and policies about where to
place objects. The placement logic shared between clients and
storage devices combines this policy with a monitor-maintained
map of storage device status (operating, temporarily down, out
of service) to calculate where individual objects are located. Cli-
ents perform writes to one object storage device, and the storage
devices coordinate between themselves to perform replication
and data recovery [9]. Ceph currently lacks support for erasure
coding, but multiple efforts are underway to add it.

The present RADOS protocol lacks access control beyond a
public key needed to communicate with the cluster at all. There
are designs for access control on extremely large scale object
storage systems [6].

Immediate Applications
Ceph is a large, complex system currently undergoing active
development and gaining new capabilities. There are several
use-cases it can address out of the box.

Ceph provides an immediately replicated file system in a single
datacenter environment. A stable write to a file is considered to
be complete when it has been stably recorded on all devices rep-
licating the given block, giving resilience against drive failure.
Per-directory immutable snapshots can be made by unprivileged
users allowing them to version their data.

Even without the file system, Ceph can be used in the construc-
tion of private clouds that leverage the large number of applica-
tions made to work with the S3 protocol. Ceph can be dropped
in as a replacement for public cloud services simply by setting
up a cluster and configuring applications to use the RADOS
Gateway server as the target for requests. Also, Ceph can be used
as a proxy server for Swift requests in OpenStack installations,
though its Swift interface is less complete than its S3 interface.

www.usenix.org	   F eb rua ry 20 14  Vo l . 3 9, N o. 1  9

File Systems
A Saga of Smart Storage Devices

RADOS block devices (RBD) have full Linux kernel support,
and can be used any way you would use any other block device,
but with replication and a snapshot capability. Some people
have experimented with re-exporting RADOS block devices
over iSCSI to make them available to other operating systems,
such as FreeBSD or Windows. RBD’s biggest success has been
in virtualization environments. In addition to providing an RBD
device as a normal block device, RBD support has been inte-
grated into virtualization and cloud computing systems, such as
OpenStack, and any systems using libvirt (such as CloudStack
and virt-manager).

CohortFS Development
Our goals at CohortFS include development in the field of object
storage. Currently, we’re focusing on improving the capabilities
of Ceph as both an object store and a file system, and on improv-
ing NFS to take the best advantage of advanced functionality
that a file system provides.

Ceph via NFS
We have added NFS access to the Ceph file system and to the
Ganesha user space NFS server, and have implemented pNFS
access for objects striped over Ceph OSDs. In the future, we
will be developing a new layout type to better take advantage
of placement strategies other than repeated striping patterns;
we will also be adding support to Ceph for a recallable layout
that better matches the requirements of NFS than do current
Ceph capabilities.

Volumes
We are adding an implementation of volumes to Ceph, which will
allow a single cluster to hold multiple independently rooted file
systems or collections of objects, each with its own administra-
tive domains of control to support delegated multi-tenancy. Our
future development in this area includes automatic allocation of
object-storage devices with different capabilities to fill adminis-
trator-specified quality-of-service requirements.

Erasure Coding and Client Offload
We are currently adding erasure coding support to Ceph, using
the Jerasure library. In CohortFS, clients will be able to perform
replicated writes and generate erasure codes rather than having
to leave those to the OSDs. This frees us of the requirement to
have multiple OSDs coordinate in a computation for each write,
while still allowing OSDs to repair faults automatically. This is
in contrast with another erasure coding project for Ceph where
erasure codes are generated cooperatively by the OSDs.

Dynamically Generated Placement Functions
We take the notion of a globally known placement function to
its logical conclusion by dynamically generating placement

functions as fragments of executable code that are distributed
throughout a Ceph cluster and to clients. This allows us to tailor
data placement specifically to the requirements of the use-case.
Additionally, expensive optimization of the function against the
cluster description can be performed once, centrally. This gains
faster placement calculation without loss of generality. Finally,
this allows us to change the behavior of the system radically
without having to go through the expensive and error-prone
operation of a cluster-wide upgrade.

Availability
Much of the software mentioned here is available with source on
the Internet. An implementation of a T10 OSD target is available
from http://www.open-osd.org. They also developed an initiator
and a scale-out network file system built on top of the T10 OSD
protocol called ExoFS. ExoFS and the T10 initiator have been
integrated into recent Linux source trees.

Ganesha is a user-space server for versions 3 and 4 of the NFS
protocol and for 9P, a file-system protocol originally used for the
Plan 9 operating system that is now seeing some use in high-
performance computing environments. Ganesha’s design is
centered around a File System Abstraction Layer, allowing it to
serve systems as diverse as the Linux open-by-handle interface,
ZFS (through libraries), and even a proxy to other NFS servers.
It is used as an NFS front-end for both free and proprietary file
systems, and also functions as a platform for development of
new server functionality. Ganesha is available from http://
nfs-ganesha.github.com.

The Ceph distributed object store and file system is available
from http://ceph.com.

OpenStack is a free Infrastructure-as-a-Service framework that
implements the Swift object storage service as well as integrat-
ing well with other object storage systems, such as S3 and Ceph.
OpenStack is available from http://www.openstack.org.

The Jerasure library implements many freely available erasure
codes and is available from http://Web.eecs.utk.edu/~plank/
plank/papers/CS-08-627.html.

Much of our work is available in the Ganesha NFS server, and
some has (or will shortly be) submitted to Ceph. Other parts of
CohortFS will become freely available as they are completed.

Acknowledgments
We would like to thank the National Science Foundation, which
has funded our work on CohortFS through a Small Business
Innovation Research grant, Peter Honeyman for his work in
helping to design CohortFS, and the Ceph community for provid-
ing a flexible and open platform for development. We would also
like to thank the Ganesha community for embodying everything
that is good about collaborative, free software development.

10    F eb rua ry 20 14  Vo l . 3 9, N o. 1 	 www.usenix.org

File Systems
A Saga of Smart Storage Devices

References
[1] Amazon.com, “Working with RTMP Distributions,” Octo-
ber 2013: http://docs.aws.amazon.com/AmazonCloudFront/
latest/DeveloperGuide/WorkingWithStreamingDistributions
.html.

[2] R. T. Fielding, and R. N. Taylor, “Principled Design of the
Modern Web Architecture,” ACM Transactions on Internet
Technology 2 (2002), pp. 115-150.

[3] G. A. Gibson, D. F. Nagle, W. I. Courtright, N. Lanza, P.
Mazaitis, M. Unangst, and J. Zelenka, “NASD Scalable Stor-
age Systems,” Proceedings of USENIX 1999, Linux Workshop,
Monterey CA, June 9–11, USENIX Association.

[4] R. J. Honicky, “A Fast Algorithm for Online Placement and
Reorganization of Replicated Data,” Proceedings of the 17th
International Parallel & Distributed Processing Symposium
(IPDPS 2003).

[5] R. J. Honicky and E. L. Miller, “Replication Under Scalable
Hashing: A Family of Algorithms for Scalable Decentral-
ized Data Distribution,” Proceedings of the 18th International
Parallel & Distributed Processing Symposium (IPDPS 2004).

[6] A. Leung and E. L.Miller, “Scalable Security for Large, High
Performance Storage Systems,” Proceedings of the 2nd ACM
Workshop on Storage Security and Survivability (StorageSS
2006) (Alexandria, VA, October 2006), ACM.

[7] J. Plank, “Erasure Codes for Storage Systems: A Brief Primer,”
USENIX ;login: (December 2013, Volume 38, Number 6).

[8] S. Shepler, M. Eisler, and D. Noveck, Network File System
(NFS) Version 4 Minor Version 1 Protocol, RFC 5661 (Pro-
posed Standard), January 2010.

[9] S. A. Weil, “Ceph: Reliable, Scalable, and High-Performance
Distributed Storage,” Ph.D. thesis, University of California at
Santa Cruz, December 2007.

Buy the Box Set!
Whether you had to miss a conference, or just didn’t make it to all of the sessions, here’s your chance to
watch (and re-watch) the videos from your favorite USENIX events. Purchase the “Box Set,” a USB drive
 containing the high-resolution videos from the technical sessions. This is perfect for folks on the go or
those without consistent Internet access.

Box Sets are available for:

 LISA ’13: 27th Large Installation System Administration Conference

 USENIX Security ’13: 22nd USENIX Security Symposium

 HealthTech ’13: 2013 USENIX Workshop on Health Information Technologies

 WOOT ’13: 7th USENIX Workshop on Offensive Technologies

 UCMS ’13: 2013 USENIX Configuration Mangement Summit

 HotStorage ’13: 5th USENIX Workshop on Hot Topics in Storage and File Systems

 HotCloud ’13: 5th USENIX Workshop on Hot Topics in Cloud Computing

 WiAC ’13: 2013 USENIX Women in Advanced Computing Summit

 NSDI ’13: 10th USENIX Symposium on Networked Systems Design and Implementation

 FAST ’13: 11th USENIX Conference on File and Storage Technologies

 LISA ’12: 26th Large Installation System Administration Conference

Learn more at:
www.usenix.org/boxsets

