
6    J U N E 20 14  VO L . 3 9, N O. 3 	 www.usenix.org

FILE SYSTEMS AND STORAGE~okeanos
Large-Scale Cloud Service Using Ceph

F I L I P P O S G I A N N A K O S , V A N G E L I S K O U K I S , C O N S T A N T I N O S
V E N E T S A N O P O U L O S , A N D N E C T A R I O S K O Z I R I S

Filippos Giannakos is a cloud
storage engineer at the Greek
Research and Technology
Network. His research
interests include distributed

and software-defined storage. Giannakos is
a PhD candidate in the Computing Systems
Laboratory at the School of Electrical and
Computer Engineering, National Technical
University of Athens. philipgian@grnet.gr

Vangelis Koukis is the technical
lead of the ~okeanos project
at the Greek Research and
Technology Network (GRNET).
His research interests include

large-scale computation in the cloud, high-
performance cluster interconnects, and
shared block-level storage. Koukis has a PhD
in electrical and computer engineering from
the National Technical University of Athens.
vkoukis@grnet.gr

Constantinos Venetsanopoulos
is a cloud engineer at the Greek
Research and Technology
Network. His research interests
include distributed storage

in virtualized environments and large-scale
virtualization management. Venetsanopoulos
has a diploma in electrical and computer
engineering from the National Technical
University of Athens. cven@grnet.gr

Nectarios Koziris is an associate
professor in the Computing
Systems Laboratory at the
National Technical University of
Athens. His research interests

include parallel architectures, interaction
between compilers, OSes and architectures,
OS virtualization, large-scale computer
and storage systems, cloud infrastructures,
distributed systems and algorithms, and
distributed data management. Koziris has a
PhD in electrical and computer engineering
from the National Technical University of
Athens. nkoziris@cslab.ece.ntua.gr

keanos is a large-scale public cloud service powered by Syn-
nefo and run by GRNET. Ceph is a distributed storage solu-
tion that targets scalability over commodity hardware. This

article focuses on how we use Ceph to back the storage of ~okeanos. More
specifically, we will describe what we aimed for in our storage system, the
challenges we had to overcome, certain tips for setting up Ceph, and experi-
ences from our current production cluster.

The ~okeanos Service
At GRNET, we provide ~okeanos [2, 4], a complete public cloud service, similar to AWS, for
the Greek research and academic community. ~okeanos has Identity, Compute, Network,
Image, Volume, and Object Storage services and is powered by Synnefo [3, 5]. ~okeanos cur-
rently holds more than 8000 VMs.

Our goals related to storage are to provide users with the following functionality:

◆◆ The ability to upload files and user-provided images by transferring only the missing data
blocks (diffs).

◆◆ Persistent VMs for long-running computationally intensive tasks, or hosting services.

◆◆ Thin VM provisioning (i.e., no copy of disk data when creating a new VM) to enable fast
spawning of hundreds of VMs, with zero-copy snapshot functionality for checkpointing and
cheap VM backup.

We aim to run a large-scale infrastructure (i.e., serve thousands of users and tens of thou-
sands of VMs) over commodity hardware.

A typical workflow on ~okeanos is that a user downloads an image, modifies it locally (e.g.,
by adding any libraries or code needed), and reuploads it by synchronizing it with the server
and uploading only the modified part of the image. The user then spawns a large number of
persistent VMs thinly, with zero data movement. The VM performs some computations, and
the user can then take a snapshot of the disk as a checkpoint; the snapshot also appears as a
regular file on the Object Storage service, which the user can sync to his/her local file system
to get the output of the calculations for further offline processing or for backup.

To achieve the described workflow, however, we had to overcome several challenges regard-
ing storage.

Storage Challenges
We stumbled upon two major facts while designing the service: (1) providing persistent VMs
conflicts with the ability to scale and (2) using the same storage entities from different ser-
vices requires a way to access them uniformly without copying data.

Providing persistent VMs while being able to scale is a demanding and difficult problem to
solve. Persistence implies the need to live migrate VMs (change their running node while
keeping the VM running) or fail them over (shut them down and restart them on another
node) when a physical host experiences a problem. This implies shared storage among the
nodes because the VM, and consequently the VM’s host, needs to access the virtual disk’s
data. The most common solution to provide shared storage among the nodes is a central
NAS/SAN exposed to all nodes.

~o

www.usenix.org	   J U N E 20 14  VO L . 3 9, N O. 3  7

FILE SYSTEMS AND STORAGE
However, having a central storage to rely on cannot scale and can
be a single point of failure for the storage infrastructure. DRBD
is another well-known enterprise-level solution to provide per-
sistent VMs and scale at the same time. DRBD mirrors a virtual
disk between two nodes and propagates VM writes that occur
on one node to the replica. DRBD is essentially a RAID-1 setup
over network. However, this choice imposes specific node pairs
where the data is replicated and where the VM can be migrated,
narrowing the administrator’s options when performing mainte-
nance. Moreover, it does not allow for either thin VM provision-
ing or for sharing blocks of data among VM volumes and user
uploaded files, which takes us to the second problem.

The second problem we had to overcome involved presenting
the different storage entities to the cloud layer uniformly. For
example, a snapshot should be treated as a regular file to be
synced and also as a disk image to be cloned. The actual data,
though, remain the same in both cases, and only the cloud layer
on top of the storage should distinguish between the two aspects.
Therefore, we needed a way to access the same data from differ-
ent cloud services uniformly, through a common storage layer.

To solve these problems, we needed a storage layer that would
abstract the cloud aspect of a resource from its actual data and
allow the ability to present this data in various ways. Addition-
ally, we needed this mechanism to be independent from the
actual data store. Because no suitable solution existed, we cre-
ated Archipelago.

Archipelago
Archipelago [1] is a distributed storage layer that unifies how
storage is perceived by the services, presenting the same
resources in different ways depending on how the service wants
to access them. It sits between the service that wants to store
or retrieve data and the actual data store. Archipelago uses
storage back-end drivers to interact with any shared data store.
It also provides all the necessary logic to enable thin volume
provisioning, snapshot functionality, and deduplication over
any shared storage. Therefore, Archipelago allows us to view the
cloud resources uniformly, whether these are images, volumes,
snapshots, or just user files. They are just data stored in a storage
back end, accessed by Archipelago.

Synnefo uses Archipelago to operate on the various representa-
tions of the same data:

◆◆ From the perspective of Synnefo’s Object Storage service, im-
ages are treated as common files, with full support for remote
syncing and sharing among users.

◆◆ From the perspective of the Compute service, images can be
cloned and snapshotted repeatedly, with zero data movement
from service to service.

◆◆ And, finally, snapshots can appear as new image files, again
with zero data movement.

Backing Data Store
Archipelago acts as a middle layer that presents the storage
resources and solves the resource unification problem but does
not actually handle permanent storage. We needed a data store
to host the data. Because we were not bound by specific con-
straints, we had various shared storage options. We decided to
start with an existing large central NAS, exposed to all nodes as
an NFS mount. This approach had several disadvantages:

◆◆ It could not scale well enough to hold the amount of users and
data we aimed for.

◆◆ Having a large enterprise-level NAS imposed geographical
constraints. The data reside in only one datacenter.

◆◆ It imposes a centralized architecture, which is difficult and
costly to extend.

Because ~okeanos had exponential growth, we needed a different
storage solution.

Ceph
Ceph is a distributed storage solution. It offers a distributed
object store, called RADOS [6], block devices over RADOS called
RBD, a distributed file system called CephFS, and an HTTP
gateway called RadosGW. We have been following its progress
and experimenting with it since early 2010.

RADOS is the core of Ceph Storage. It is a distributed object
store comprising a number of OSDs, which are the software
components (processes) that take care of the underlying storage
of data. RADOS distributes the objects among all OSDs in the
cluster. It manages object replication for redundancy, automatic
data recovery, and cluster rebalancing in the presence of node
failures.

RBD provides block devices from objects stored on RADOS. It
splits a logical block device in a number of fixed-size objects and
stores these objects on RADOS.

CephFS provides a shared file system with near-POSIX seman-
tics, which can be mounted from several nodes. CephFS splits
files into objects, which are then stored on RADOS. It also con-
sists of one or more metadata servers to keep track of file-system
metadata.

8    J U N E 20 14  VO L . 3 9, N O. 3 	 www.usenix.org

FILE SYSTEMS AND STORAGE
~okeanos: Large-Scale Cloud Service Using Ceph

Finally, RadosGW is an HTTP REST gateway to the RADOS
object store.

Ceph seemed a promising storage solution that provided scal-
able distributed storage based on commodity hardware, so we
decided to evaluate it. Ceph exposes the data stored in RADOS in
various forms, but it does not act on them uniformly like Archi-
pelago does. Because we already had an HTTP gateway and VM
volume representation of the data by Archipelago, we needed
RADOS, which also happens to be the most stable and mature
part of Ceph, to store and retrieve objects. We used Ceph’s libra-
dos to implement a user-space driver for Archipelago to store our
cloud data on RADOS and integrate it with Synnefo.

Things to Consider with Ceph
While evaluating RADOS, we experimented with various
RADOS setup parameters and drew several conclusions regard-
ing setup methodology and RADOS performance.

OSD/Disks Setup
Ceph’s OSDs are user-space daemons that form a RADOS clus-
ter. Each OSD needs permanent storage space where it will hold
the data. This space is called “ObjectStore” in RADOS terminol-
ogy. Ceph currently implements its ObjectStore using files, so we
will use the term “filestore.” We had several storage nodes that
could host RADOS OSDs. Each node had multiple disks. So the
question arose how to set up our RADOS cluster and where to
place the filestores. We had numerous parameters to consider,
including the number of OSDs per physical node, the number of
disks per OSD, and the exact disk setup. After extensive test-
ing, we concluded that it is beneficial to have multiple OSDs per
node, and we dedicated one disk to each one. This setup ensures
that one OSD does not compete with any other for the same disk
and allows for multiple OSDs per node, resulting in improved
aggregate performance.

Journal Mode and Filestore File System
Along with the filestore, each OSD keeps a journal to guarantee
data consistency while keeping write latency low. This means
that every write gets written twice in each OSD, once in the
journal and once in the backing filestore. There are two modes in
which the journal can operate, write-ahead and write-parallel.
In write-ahead mode, each write operation is first committed to
the journal and then applied to the filestore. The write operation
can be acknowledged as soon as it is safely written to the journal.
In write-parallel mode, each write is written to both the journal
and the filestore in parallel, and the write can be acknowledged
when either of the two operations is completed successfully.
The write-parallel mode requires btrfs as the file system of the
backing filestore, because it makes use of btrfs-specific features,
such as snapshots and rollbacks, to guarantee data consistency.
On the other hand, the write-ahead mode can work with all the

recommended file systems, such as ext4 and XFS. Because btrfs
is still not production ready and showed significant instability
under heavy load, we decided to proceed with ext4 and write-
ahead journal mode.

Journal Placement and Size
The RADOS journal can be placed in a file in the backing
filestore, in a separate disk partition on the same disk, or in
a completely separate block device. The first two options are
suboptimal because they share the bandwidth and IOPS of the
OSD’s disk with the filestore, essentially halving the overall
disk performance. Therefore, we placed the RADOS journal in a
separate block device.

You might think that, because writes are confirmed when they
hit the journal, an OSD can sustain improved write performance
for a longer period by using a bigger journal on a fast device,
falling back to filestore performance when the journal gets
full. However, our experiments showed that RADOS OSDs do
not work like that. If the journal media is much faster than the
filestore, the OSD pauses writes when it tries to sync the journal
with the filestore. This behavior can result in abnormal and
erratic patterns during write bursts. Thus, a small portion of a
block device with performance close to the one of the filestore
should be used to hold the journal. Because we do not need large
journals, multiple journals can be combined in the same block
device, as long as it provides enough bandwidth for all of them.

RADOS Latency
When evaluating a storage system, especially for VM virtual
disks’ data, latency plays a critical role. VMs tend to perform
small (4 K to 16 K) I/Os where latency becomes apparent. Our
measurements showed that RADOS has a non-negligible latency
of about 2 ms, so you cannot expect latency comparable with
local disks. This behavior can be masked by issuing multiple
requests or performing larger I/O to achieve high throughput.
Also, because the requests are equally distributed among all
OSDs in a cluster, the overall performance remains highly
acceptable.

Data Integrity Checking
Silent data corruption caused by hardware can be a big issue on a
large data store. RADOS offers a scrubbing feature, which works
in two modes: regular scrubbing and deep scrubbing. Regular
scrubbing is lighter and checks that the object is correctly repli-
cated among the nodes. It also checks the object’s metadata and
attributes. Deep scrubbing is heavier and expands the check to
the actual data. It ensures data integrity by reading the data and
computing checksums.

www.usenix.org	   J U N E 20 14  VO L . 3 9, N O. 3  9

FILE SYSTEMS AND STORAGE
~okeanos: Large-Scale Cloud Service Using Ceph

Storage vs. Compute Nodes
Another setup choice we had was to keep our storage nodes
distinct from our compute nodes, where the VMs reside. This
has two main advantages. First, OSDs do not compete with the
VMs for compute power. OSDs do not require a lot of CPU power
normally, but it can be noticeable while scrubbing or rebalanc-
ing. Normal operations will also require more CPU power with
the upcoming erasure coding feature, where CPU power is used
to reconstruct objects in order to save storage space. Second, we
can use the storage container RAM as cache for hot data using
the Linux page-cache mechanism, which uses free RAM to
cache recently accessed files on a file system. Hosting VMs on
the same node would leave less memory for this purpose.

Experiences from Production
Ceph has been running in production since April 2013 acting
as an Archipelago storage back end. As of this writing, Ceph’s
RADOS backs more than 2000 VMs and more than 16 TB of
user-uploaded data on the Object Storage service.

Our current production setup comprises 20 physical nodes. Each
node has

◆◆ 2 × 12-Core Xeon(R) E5645 CPU

◆◆ 96 GBs of RAM

◆◆ 12 × 2 TB SATA disks

Our storage nodes can provide more CPU power than Ceph cur-
rently needs. We are planning to use this extra power to seam-
lessly enable future Ceph functionality, like erasure coding,
and to divert computationally intensive storage-related tasks
(e.g., hashing) to the storage nodes, using the RADOS “classes”
mechanism.

Each physical node hosts six OSDs. Each OSD’s data resides
on a RAID-1 setup between two 2 TB disks. RADOS replicates
objects itself, but because it was under heavy development, we
wanted to be extra sure about the safety of our data. By using
this setup along with a replication level 2, we only use one fourth
of our overall capacity, which covers our current storage needs.
As our storage needs grow and RADOS matures, we aim to break
the RAID setups and double the cluster capacity.

Using Ceph in production has several advantages:

◆◆ It allows us to use large bulk commodity hardware.

◆◆ It provides a central shared storage that can self-replicate, self-
heal, and self-rebalance when a hardware node or a network
link fails.

◆◆ It can scale on demand by adding more storage nodes to the
cluster as demand increases.

◆◆ It enables live migration of VMs to any other node.

Using Ceph in a large-scale system also revealed some of its
current weaknesses. Scrubbing and especially deep scrubbing
can take a lot of time to complete. During these actions, there
is significant performance drop. The cluster fills with slow
requests and VMs are affected. This is a major drawback, and we
had to completely disable this functionality. We plan to re-enable
it as soon as it can be used without significant performance
regression. Performance also drops when rebuilding the cluster
after an OSD failure or when the cluster rebalances itself after
the addition of a new OSD. This issue is closely related to the
performance drop during deep scrubbing, and it occurs because
RADOS does not throttle traffic related to recovery and deep
scrubbing according to the underlying disk utilization and the
rate of the incoming client I/O.

On the other hand, Ceph has survived numerous hardware
failures with zero data loss and minimal service disruption.
Its overall usage experience outweighs the hiccups we endured
since we began using it for production purposes.

In conclusion, our experience from running a large-scale Ceph
cluster shows that it has obvious potential. It can run well over
commodity hardware, scale without any visible overhead, and
helped us to deploy our service. However, in its current state,
running it for production purposes has disadvantages because it
suffers from performance problems when performing adminis-
trative actions.

Ceph is open source. Source code, more info, and extra material
can be found at http://www.ceph.com.

References
[1] Archipelago: http://www.synnefo.org/docs/archipelago/
latest.

[2] The ~okeanos service: http://okeanos.grnet.gr.

[3] Synnefo software: http://www.synnefo.org.

[4] Vangelis Koukis, Constantinos Venetsanopoulos, and
Nectarios Koziris, “~okeanos: Building a Cloud, Cluster by
Cluster,” IEEE Internet Computing, vol. 17, no. 13, May-June
2013, pp. 67–71.

[5] Vangelis Koukis, Constantinos Venetsanopoulos, and
Nectarios Koziris, “Synnefo: A Complete Cloud Stack over
Ganeti,” USENIX, ;login:, vol. 38, no. 5 (October 2013), pp.
6–10.

[6] Sage A. Weil, Andrew W. Leung, Scott A. Brandt, and Car-
los Maltzahn, “RADOS: A Scalable, Reliable Storage Service
for Petabyte-Scale Storage Clusters,” in Proceedings of the
2nd International Workshop on Petascale Data Storage: Held
in Conjunction with Supercomputing ’07, PDSW ‘07 (ACM,
2007), pp. 35–44.

