The 10-Kilobyte Web Browser

JON HOWELL, BRYAN PARNO, AND JOHN R. DOUCEUR

Jon Howell is re-envisioning the
delivery of client applications,
building a large scale,
consistent distributed name

.. service, building formally
verified software, and improving verifiable

computation. howell@microsoft.com

Bryan Parno focuses on
protocols for verifiable
computation and zero-
knowledge proofs, building
. practical, formally verified
secure systems, and developing next-
generation application models.

parno@microsoft.com

John R. Douceur is interested
in the design of distributed
algorithms, data structures,
and protocols, and in the

measurement, evaluation, and
analytical modeling of systems and networks,
with particular focus on statistical analysis and

simulation. douceur@microsoft.com

6 :login: DECEMBER 2013

VOL. 38 NO. 6

n theory, browsing the Web is safe: click a link, and if you don’t like what

you see, click “close” and it disappears forever. In practice, this guaran-

tee doesn’t hold, because the browser is complex in both implementa-
tion and specification. We designed and built an alternate Web app delivery
model in which the client-side interface specification and code—the pieces
that replace the browser—are extremely simple, yet can run applications even
richer than today’s JavaScript apps. This article describes how we achieve
this goal, and suggests a path forward into a future free of today’s bloated
browser interface.

Today a Web browser is a 100 M B operating system. Most of those megabytes interpret
JavaScript and render images, but the browser’s most important job is to provide the user
with the ability to visit different Web sites safely, confident that merely viewing one Web site
won’t have any effect on any of the other sites she uses and relies on. Reliable isolation is best
achieved in a simple design. The ideal Web browser would be a VNC viewer: each site renders
its own content entirely independently, and the only job of the client machine is to show the
various pixels to the user.

Of course, real browsers don’t have such a simple specification. They’re vastly more compli-
cated, including HTML, DOM, CSS, JavaScript, JPG, PNG, and a complex specification for
how various applications might interact with one another. This complexity forms a vulner-
able surface, and hence real Web browsers don’t actually succeed in isolating different pages;
users are cautioned to avoid “dangerous” links lest their browser be compromised.

This ideal VNC pixel browser may seem absurd at first, but clearly it gets isolation right. You
might complain that the performance stinks because it depends on a fast, available network,
but we can fix that by allowing each site vendor to borrow a little virtual machine on the client;
think of it as a pico-datacenter. That VM is strongly isolated from the other sites’ VMs, just as

customers in a real datacenter, say of a cloud-hosting provider, are isolated from one another.

In this new model (Figure 1), the specification of the browser is tiny and robust. Without

a simple, clear specification, isolation is unachievable. With a clear specification, like this
VM+VNC analogy, seeing how isolation can be rigorously maintained is easy; we push all the
challenges of deciding how sites should interact with one another to the sites themselves.
Promiscuous sites can still share cookies or engage in risky, CSRF-prone behavior (e.g., host-
ing user-supplied content), but cautious sites (e.g., bank Web sites) now have the control to
reject those complex interactions.

The proposal of a virtual machine for execution and VNC for displaying pixels gives an
intuition for how simple the interface can be, but we can go even simpler. We propose a
minimal client execution interface called a picoprocess. A picoprocess is native code running
in a hardware address space. It can allocate memory and threads, use futexes to schedule
threads, read a real-time clock, and set areal-time alarm. All communication—to remote
servers or to neighboring processes—is via IP; thus, an attacker can’t do anything more
threatening on the client machine than it could do from a server. (An attacker might relay IP
attacks through its presence on a client, but the client’s IP packets enter the Internet outside

WWwWWw.usenix.org

SEGURITY

The 10-Kilobyte Web Browser

AN Z AN Z AN
a.com b.com c.com a.com b.com c.com a.com b.com c.com
server server server server server server server server server
A A A A A A A A A
=] : : : : : °H : :
=H : : : : : 5 : :
= . . H : : +1 : H
L S £ i
a.com | | b.com | | c.com - : : : ;,: H H
client client client EH . H SH : :
code code code a: H H =H : :
GWT | | jQuery dojo E E E a.com b.com c.com
HTML o H H H GWT | | jQuery GTK
JavaScript interpreter Y Y Y US intergd S interd | Pango
css) HTML | | HTML X
JPG rendering a.com | | b.com | f c.com asterize| |rasterize| |rasteriz
Cookies pixels pixels pixels pixels pixels pixels
PostMessage
HTTP .. I pixel painting | I picoprocesses, pixel painting

In today's web, site vendors send code
and libraries to the client, but that code
runs on a platform of ever-increasing
complexity. That platform is responsible
for isolating the sites from each other,
and it mediates interactions (dashed
lines) among the sites.

If the client only supported VNC (painting
pixels), its complexity would be
drastically reduced, and isolation would
be provided with certainty. Display
rendering (converting HTML to pixels)
happens on the servers, and interactions
among sites become protocols among
servers. Network performance would be

unfortunate, though.

Figure 1: The current, the ideal, and a new way to browse the Web

any firewall, so the relay doesn’t gain any privilege from the cli-
ent’s IP address or network position.) The client provides a source
of randomness to enable the app to encrypt its messages over IP.
Finally, the app displays its content by using its own libraries to
render to an off-screen bitmap, then asking the client to paint a
rectangle of pixels on the screen, semantics as simple as VNC.

This minimal interface replaces the role of the VM described
above. Because it’s even simpler than a conventional VM, the
interface can be implemented easily on any host, from desktop
OSes to native microkernels. On Linux, for example, the picopro-
cess is a Linux process, blocked from making Linux system calls
by one of several mechanisms: kvm, ptrace, or filtering system
callsdowntoread and write on a single open file handle to a
monitor process.

Despite this tiny client picoprocess, the ability to run native
code means the app itself can provide glorious complexity. The
GIMP photo editor and the AbiWord word processor run in this
container [2]. We also run a WebKit browser, to show how the
trusted complexity of a conventional HTML browser can be
repackaged as safely isolated rendering code.

This idea is ambitious: we're describing a substantial refactor-
ing of the Web, shifting much responsibility from the browser
(and the user) to the vendors that create the applications, so that
visiting a site is no longer a risky proposition. But the ability to
send binary code rather than JavaScript means the idea goes
farther: it not only realizes the “safe click” promised by the Web,

WWWw.usenix.org

In our design (Embassies), we bring
code back to the client, while preserving
the simplicity of VNC semantics.
Isolation is certain. Interactions among
sites are still protocols run by
participating vendor code, not mediated
by a complex client platform. Because
the client accepts native code,
complexity grows inside apps, not in the
platform.

but it can bring those semantics to classic desktop applications,
like the GIMP. When the plan is realized, your Webmail provider
might be based on real Outlook and you might edit documents
with MicrosoftWord.com or LibreOffice.org: solid desktop app
code supported by its site rather than by the end user.

Our Embassies paper [1] proposes this application delivery in
detail, discussing the tradeoffs consequent in shifting complex-
ity from clients to applications. Our USENIX paper [2] shows
how these complex apps can be repackaged to run inside the
constrained picoprocess; source code is available [3].

How Do We Get There from Here?

The overall vision involves reconsidering several of our assump-
tions about the roles, responsibilities, and relationships that
make up today’s Web software ecosystem. Rather than end users
selecting a JavaScript implementation (“download a fast new
browser!”), site vendors will choose their client-side software
stacks the same way they choose today among Python, Ruby, and
PHP on the server side. Such an ambitious change may need to
happen in small steps.

A key step on the way to Utopia is the shift from specifying
client-side software in Web 2.0 (the complex amalgamation of
JavaScript, DOM, CSS, and so on) to specifying it as native code
that interacts through primitive low-level interfaces, such as
painting raw pixels. It’s an important step because it opens the
door to shifting rendering components inside each application.

;login: DECEMBER 2013 VOL.38NO.6 7

SEGURITY

The 10-Kilobyte Web Browser

Figure 2: Three applications that currently run in an Embassies picoprocess

raster.graphics.net

S View Image Layer Colors Tools Fiters Windows Help
Do o T T L D T =
gonzeal]
LR ey
BRAEA
SELZ /O
28 &R
ol o
@
Lol
Smudge @
Mode: | Normal v
opacity. |1 [100.0 [
Brush: LICVC\E(]]) alé ®|1|@| gs ,FE 3
seale: [__I[ro0 T Oy — 1]]
b Brush Dynamics
o — [Te1 [
[Fade out \ OB 1
O I——1 153]]
WA O —— 175]
[Hard edge = E‘
HTML notation: |a48f
Rate: [1_L[1[500 T:
corerne, p— L | (L (1]
- oo || [[|
& s | gconce

Figure 2a: GIMP in an Embassies picoprocess

wordprocessor.office.org

Fle Edit View Insert Format Tools Table Collaborate Documents Help
DEE @S9 ¢ & Ba " roewn-|

Heading 1 [vlLiberaticm Sans Ivlrjllg [ED =5 -
S memeg B @ B8 B e

[The 10 kilobyte web browser
A web browser is a 100MB operating system . It has one truly impartant job- to provide the
user with the ability to visit different websites safely, confident that merely viewing one
N website won't have any effect on any of the other sites she uses and relies on. Reliable
B isclation i best achieved in a simple design The ideal web browser would be a VNC viemer
: each site renders its oun content entiely independenily, and the anly job of the client
: machine is to show the various pirelsto the user
- OF course, eal brow sers dorit have such 2 simple spedfication. They're vastly more
complicated, including HTML, DOM, CSS, JavaSeript, IPG, PNG, and a complex
o » for how various applicaons might interact with ane another. This complexity
forms a wulnerable surface, and hence real web browsers don 't actually succeed in isolating
differert pages; users are cautioned to avoid “dangerous” links lest their browser be
compromised
Sowhar's sa bad abaut thatideal VNC pirel browser? It clearly setsisolation sight. You
might complain that the performance stinks because it depends on a fast, available network,
B but e can fi that by letting the site vendors barraw alitle virtual m achine on the client.
: Thet VM is sill strongly isalated, just as customers of 2 cloud hosting providet are isclated

Fage: 1/4 [[insert [default Tenus

Figure 2b: AbiWord in an Embassies picoprocess

craigslist

le Edit View Go Bookmarks Tools Window Help

r =
@ 2 b =) |@ file:///home/ione/jonh/zoog/toolcha e, [Googie
lewTab Back Forward Next Refresh Sidepanel Closed Tab
<
Cralgshst seattle-tacoma * see est sno kit tac ol ske nearby d
bellingham
post to classifieds community housing jobs comox valley
my account activities lost+found apts / housing accounting+finance corvallis

east oregon
eugene

artists musicians rooms / shared admin / office

search craigslist childcare local news sublets / temporary arch | engineering ot
general politics housing wanted art | media | design Komoons
for sale v il groups rideshare housing swap biotech / science kelowna
pets volunteers wvacation rentals business / mgmt kootenays
venticalond events classes parking / storage customer service ‘;:‘::r";
office [commercial education ek
Sl L L personals real estate for sale food / bev / hosp o
16[17[18f18[20[a1]22] | circry piatonic general labor olympic pen
23|24 | 25|26 27|28 |29 wornen seek worman for sale government oregon coast
01|22 4 56 wormen seeking men appliances artsterafts human resources o)
DT | T e T b
men seeking men barter baby-+Hkids legal | paralegal e
EE— bikes beautythith manufacturing et
help. fag, abuse. legal casual encounters boats cars+trucks marketing { pr [ad skagit
avoid scams & fraud missed connactions books cds/dvdvhs medical f health spokane.
rants and raves business cell phones nonprofit sector SIS G

personal safety tips trixcities

computer clothes+acc real estate vancouver
terms of use discussion forums free collectibles retail / wholesale S
R 1008 gfts pets furniture electronics sales / biz dev wenatchee
apple haiku phios general farm+garden salon / spa / fitness fahiieg
ats health politic jewelry garage sale security 2k
about craigslist atheist help psych materials household skilled trade f craft

beauty housing recover

canada

craigslist blog autos history queer s motorcycles software / ga / dba

snarting svstems / natwark

Figure 2c: WebKit in an Embassies picoprocess

8 ;login: DECEMBER 2013 VOL.38 NO. 6

Butit’s also a step that’s compelling all by itself. The Xax [4] and
Native Client [5] projects, both introduced in 2008, showed that
delivering binary code to the client and executing it safely is fea-
sible. Those systems were interesting enough to let us send down
interesting components: Doom on NaCl, or PDF and OpenGL
renderers on Xax.

Going beyond components to full applications exposes big
opportunities. We can already package up GIMP and make it a
‘Web app. We can do the same for the Gnumeric spreadsheet; add
a bit of “cloud” and you have made an open-source alternative to
Google Docs’ spreadsheet. We can fit KDE Marble (a spinning
globe) into a picoprocess; that is the foundation of a Google Earth
alternative that doesn’t require a trusted plugin. The opportu-
nity to deliver rich apps is exciting in itself, even before we reach
the ambitious goal of gutting the browser.

Challenges to Delivering Rich Apps

This goal is within reach. We have the technology; however,
three tasks remain. First, we need to settle on a suitably shaped
native code container. Second, we need to publish a picoprocess
browser plugin. Third, we need to wrap up cool apps and publish
them as Web apps.

How the Native Code Container Affects Deliverability
We said above that Xax delivered fairly modest stacks of librar-
ies. Xax suffered from a practical burden: a high cost of modify-
ing libraries and applications to run in the new environment.
The Xax system replaced the ubiquitous glibc with a patched-
together uclibe. In practice, that broke some libraries, and
required linking others statically rather than dynamically. This
approach worked only for short stacks of libraries. As we tried to
enlarge the library stack, each new package required a new effort
to disassemble its build system, and some software couldn’t even
conceive of being built as a static library. These are mundane
concerns, but they proved a practical barrier to our ambitions of
porting rich desktop apps.

NaCl has encountered similar challenges, for similar reasons.
NaCl’s isolation mechanism requires modifying the compiler’s
code generation step to produce code that NaCl can verify is
safe. This requirement implies perturbing the build process (and
often the link steps) of each package. We suspect that the NaCl
team encountered a mundane but tedious and expensive burden
much like the one that affected our Xax development.

So the choice of isolation container can have a profound effect
on the ease of migrating apps to the new environment. NaCl’s
choice of verification based on software-fault-isolation (SFI) is
driven by a desire to attach untrusted libraries onto the side of
an existing browser, right inside the same process. For our ambi-
tions, this objective is ared herring: even today’s NaCl libraries
don’t need tight coupling with the browser; rich apps will stand

WwWWw.usenix.org

SEGURITY

further alone; and, ultimately, we'd like to see the browser disap-
pear entirely. Because it doesn’t offer intra-process isolation, the
picoprocess can exploit MMU protection, and hence provides a
familiar execution environment for existing code.

Still, that decision wasn’t enough to make porting easy in Xax.
We made two fine-grained changes from Xax to Embassies

that worked out well. The first was that, where Xax allowed the
application to control its address space layout, Embassies only
allows the app to ask for how much memory it needs, not where it
goes. This actually increases the burden on the app—the execut-
able must be position-independent—but it makes implementing
the host much easier. In Xax, each new host added weird new
address-space restrictions; in Embassies, this problem disap-
peared entirely.

More importantly, the main reason we couldn’t use glibc or dynamic
libraries in Xax was that we had no support for the x86 segment
registers, used for thread-local storage (TLS). That meant we had to
compile all components with --no-tls, and we couldn’t find a way to
use dynamic linking without TLS. The x86 segment-as-TLS is a
goofy hack in any case; it uses deprecated hardware to compen-
sate for the architecture’s tiny register set. Because contempo-
rary operating systems rely on paging for memory protection,
this (ab)use of segmentation hardware has no security risk. By
adding it to the Embassies picoprocess x86 specification, we're
able to use standard glibec, conventional shared library linkage,
and, hence, just about every package as is, with binary compat-
ibility. (This whole discussion is moot on any other, sane archi-
tecture, where TLS just uses a conventional program register.)

The result—the Embassies specification for a native code
container—is a spec to which a wide variety of rich apps can be
ported with little effort. We’ve ported AbiWord (word proces-
sor), Gnumeric (spreadsheet), Gnucash (accounting), Midori
(WebKit-based HTML renderer), GIMP (raster graphics design),
Inkscape (vector graphics design), and Marble (3D globe). At the
same time, the container is small, well-specified and secure, and
practical to implement on any host platform.

A Browser Plugin

Now that we know what shape the container should be, achiev-
ing the initial step of delivering rich apps as Web apps is within
reach: we need to implement the container as a plugin for the
popular browsers, and test it for security.

Performance

We've described this new model using a strong analogy to the
Web, to appeal to its “safe click” semantics. That doesn’t mean
we have to keep the Web’s online requirement, or that we have to
fetch our (now 100 M B) apps every time we open a site.

WWWw.usenix.org

The 10-Kilobyte Web Browser

Whereas conventional browsers include caching behavior,
Embassies apps control their own bootstrap and caching. An app
can fetch its 100 MB of program image from any cache on the
Internet and then check its hash to ensure they are the right bits.
That cache can be an untrusted app on the same machine, obviat-
ing the need for network connectivity. The local cache can trans-
mit the image in a single IPv6 jumbo frame, making app start fast;
we see start time overheads of ~100 ms. Thus “sending big apps”

is only an intuitive abstraction borrowed from today’s Web; in
deployed Embassies, it’s fast and works when disconnected.

Once the app is running, native code enables performance better
than JavaScript. The picoprocess’s isolation comes from paging
hardware, and hence introduces no overhead; CPU-intensive GIMP
rotations are just as fast inside Embassies as on desktop GIMP.

Delivering Cool Apps

With an appropriate container available as a ubiquitous plugin,
it’s time to start packaging desktop apps as Web pages. Our ATC
’13 paper [2] (and published code [3]) lays out how to achieve this
packaging, showing it working for lots of apps, from a spread-
sheet to an interactive 3D globe map. These apps need a little
modification to make useful Web sites: for example, they need
plumbing so that saving a document routes the content to client-
or server-side Web storage.

The long-term vision is an exciting one: it promises finally to
make browsing “safe,” and broadens browsing to include both
Web apps and desktop apps. Even if you don’t yet buy that vision,
the first step down the road is exciting all by itself: delivering all
our favorite desktop apps as easily as clicking a link.

References

[1] Jon Howell, Bryan Parno, and John R. Douceur, “Embas-
sies: Radically Refactoring the Web,” USENIX Symposium
on Networked Systems Design and Implementation (NSDI),
awarded “Best Paper,” April 2013.

[2] Jon Howell, Bryan Parno, and John R. Douceur, “How
to Run POSIX Apps in a Minimal Picoprocess,” USENIX
Annual Technical Conference (ATC), June 2013.

[3] http://embassies.codeplex.com/.

[4] John R. Douceur, Jeremy Elson, Jon Howell, and Jacob R.
Lorch, “Leveraging Legacy Code to Deploy Desktop Applica-
tions on the Web,” USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), December 2008.

[5] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley

Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka, Neha
Narula, and Nicholas Fullagar, “Native Client: A Sandbox for
Portable, Untrusted x86 Native Code,” IEEE Symposium on
Security and Privacy, May 20009.

;login: DECEMBER 2013 VOL.38NO.6 9

