
6    J U N E 20 13  VO L . 3 8 N O. 3 	 www.usenix.org

OPINIONOn Teaching Style and Maintainability
G E O F F K U E N N I N G

Geoff Kuenning spent 15 years
working as a programmer before
changing directions and joining
academia. Today he teaches
computer science at Harvey

Mudd College in Claremont, California, where
he has developed a reputation for insisting
that students must write readable software,
not just working code. When not teaching or
improving his own programs, he can often be
found trying—and usually failing—to conquer
nearby Mount Baldy on a bicycle.
geoff@cs.hmc.edu.

Computer science has existed as a separate discipline for more than 50
years, and in that time we have learned a lot about what is important
to the field and how to teach it to new entrants. We have long agreed

that every self-respecting computer scientist should have a solid grounding
in fundamental areas such as algorithms, discrete mathematics, program-
ming languages, data structures, operating systems, software engineering,
etc. But in this article, I will argue that there is a major missing component:
style and readability. I’ll try to convince you that style matters, and I will
provide suggestions for how we might encourage better style from both new
and experienced software developers.

The list of what we teach incoming students is long, and there are many critical concepts
that they need to absorb if they are to be effective in our field. Real programmers use data
structures every week, and if they don’t have a strong grounding in algorithms, they’ll make
a major blunder every month. But the essence of software engineering is in the code, and too
often we find ourselves wading through the software equivalent of this famous gem:

“In the Nuts (unground), (other than ground nuts) Order, the expression nuts shall have refer-
ence to such nuts, other than ground nuts, as would but for this amending Order not qualify
as nuts (unground) (other than ground nuts) by reason of their being nuts (unground).”

(If you know what that sentence means, please write me. I’ve been trying to figure it out for
years.)

The issue of comprehensibility is a huge hole in our current education program. Although
the 2013 draft ACM curriculum mentions “documentation and style” as a required compo-
nent of any CS education, the phrase is buried on page 147 as almost an afterthought, given
no more attention than power sets and HTTP. (Is HTTP really so fundamental that it even
deserves mention?) I claim that this neglect of style is akin to teaching English by concen-
trating on the common plot devices used in Hollywood thrillers—useful to those working in
that specific area, but not to students who need to learn the fundamentals before attempting
advanced work.

Think about it for a minute. How much of your programming time is spent writing new
code, from scratch? Be honest. Is it ten percent? Five? Less? And how much time is spent
working on existing code—trying to understand it, debugging it, adding shiny new fea-
tures? (Most of us love adding features, because that’s one of the rare times we get to write
substantial new stuff.)

The reality is that we read code every day: sometimes our own, sometimes written by some-
body else, and frequently a blend of the two. Reading code dominates our lives, and it only
makes sense that we should try to help ourselves out by making our code easy to read. Even
so, too many of us forget that fact and fall into the lazy trap of writing something that we
understand at the moment but that won’t make sense when we return to it in a year or two.

www.usenix.org	   J U N E 20 13  VO L . 3 8 N O. 3  7

OPINION
On Teaching Style and Maintainability

For example, I found the following snippet (slightly shortened for
this article) in a program I use on a daily basis:

if (fw < 1)

 fw = 1;

if (fh < 1)

 fh = 1;

if (x + ww - fw > sw)

 x -= ww - fw;

else

 x -= fw;

if (x < 0)

 x = 0;

if (y + wh - fh > sh)

 y -= wh - fh;

else

 y -= fh;

if (y < 0)

 y = 0;

Wow. To be fair, this is windowing code, so we can assume the
meanings of the suffixes “w” and “h”. And the programmers at
least had the sense to indent properly (and in the original they
used curly braces consistently). But was it really necessary to
limit the variable names to single characters, so that the reader
must guess their purpose? Why not use max for all the limit-
setting? Why are x and y limited to 0, but fw and fh to 1? And
perhaps it would be helpful to add a comment explaining why,
if x + ww - fw exceeds sw, we subtract that quantity (effectively
adding fw), but otherwise we ignore ww and subtract fw! There’s
nothing nearby that gives a hint as to what’s going on here.

The Problem
The programmers in the above case were far from incompe-
tent. And they were clearly trying to write maintainable code;
there are signs of care throughout the program. But in the end
they produced something almost incomprehensible. What
went wrong?

I believe that the fundamental difficulty is that they weren’t
taught how to understand what a programmer unfamiliar with
the code needs. They knew what the variables were for, so single-
letter reminders were sufficient. They knew why they were
adjusting x and y in such an odd fashion, and it never occurred to
them that an explanation might be useful. So somebody else who
is trying to fix a bug in this program is left to spend hours tracing
calls and analyzing the logic, or to step through with a debugger,
or (all too often) to guess “Maybe if I change the - = to a +=, things
will start working, and it’s quicker to recompile and test than to
figure out what’s going on.” But of course that hasty approach
often introduces subtle bugs elsewhere.

And why don’t programmers understand the needs of readers?
There can be many causes, including inexperience, poor skills at
explaining things, and even arrogance (“If you don’t understand
my code, you must just be stupid”). Some of these causes are dif-
ficult to address (although the world would probably be a better
place if we could ship all the arrogant programmers to a desert
island to argue amongst themselves about who is the smartest).
But we can begin by doing a better job of teaching style.

Unfortunately, there’s a chicken-and-egg problem involved:
Relatively few academics have the background necessary to
understand how to write maintainable code. The typical career
path for a university professor is to go directly from an under-
graduate degree to graduate school, and from there straight
into a tenure-track position. Undergraduate students usually
work only on their own code, and normally only on small pro-
grams. Graduates may work a little bit on someone else’s code,
but eventually they have to develop their own as part of a dis-
sertation, and although that code may be massive (especially
in systems-related specialties), it doesn’t have to work particu-
larly well and rarely has a lifetime beyond the awarding of a
PhD. Because grad students spend 99% of their time working
on their own code, which they necessarily understand inti-
mately, they can get away with leaving things uncommented,
choosing cryptic variable names, creating disastrously tangled
logic, and even worse coding practices.

The result is that many new professors have only a vague idea
of what good, maintainable code should look like. Even if they
are committed to the concept of good style (and many are), their
inexperience makes them poor judges of quality. It is as if we
asked a literature professor to teach novel-writing when they
had written only one unpublished, un-critiqued book in their
lives; no matter how good their intentions, we would get a few
great teachers and a plethora of extremely bad ones.

In the end, students who graduate with a bachelor’s degree have
spotty educations. They may be fantastic at algorithm analysis,
but many write code so bad that their new employers must spend
months or even years retraining them before they can be trusted
to work alone. And in many cases, their bad habits lead to flawed
designs, bugs, and security holes in shipped software.

A Solution?
What can be done to improve the situation? Although it’s a tough
nut to crack, I believe there are several approaches we can take.
Much of the solution falls in the laps of colleges and universities,
which, after all, have a primary mission of teaching young people
how to succeed in our field.

First, we should make maintainability and coding style an
important part of the grade on tests and especially on homework.
Grading style is labor-intensive, so it’s easy to fall into the trap

8    J U N E 20 13  VO L . 3 8 N O. 3 	 www.usenix.org

OPINION
On Teaching Style and Maintainability

of only grading functionality (often with automated tools). But
as I tell my own students, a perfectly working spaghetti program
is worthless because it can’t be enhanced, whereas a slightly
broken but wonderfully readable program is priceless because
any half-decent programmer can fix the bugs and the result will
be useful for years to come. So it’s worth hiring extra TAs and
training them to recognize good coding practices. (You will have
to train them at first, because they’ve come up through the same
style-doesn’t-matter ranks.)

Second, find ways to encourage students to read code. One of the
best ways to learn English writing is to read the great authors,
and the same holds true for software. Professors should provide
their students with large sample programs and require them to
be read and understood. Reading good code has a double benefit:
the code provides examples of how things should be done, and
it develops a skill that is essential for anyone embarking on a
career in computing. (Exceptionally demanding—or downright
mean—professors might also assign students to work with some
astoundingly bad code, which in my experience quickly con-
vinces students that readability matters. The Daily WTF (http://
thedailywtf.com/Series/CodeSOD.aspx) is a good source of brief
examples of bad programming, although many of the articles are
more concerned with weak logic than unreadability.)

Third, we need to recognize the importance of industrial experi-
ence for our faculty. When universities hire professors, they
should give preference to people who have worked on real pro-
duction code rather than to those who charged straight through
to a PhD without ever taking their eye off the ball. It doesn’t take
much; even a year or two in the trenches will do wonders to open
a young student’s eyes. (And the wise researcher will choose stu-
dents who have a bit of industrial background; not only will they
eventually become better faculty candidates, their own research
projects will go more smoothly.)

Fourth, encourage pair programming in school settings. Work-
ing with a partner is a great way to learn how to explain your
code to others and how to write in a more readable fashion.
Many colleges and universities have already introduced pair
programming in CS courses, so this recommendation is easy to
implement.

Fifth, when bringing new grad students onto a project, assign
them to maintain and enhance existing code. For example,
when I joined a research group as a new grad student, we were
just starting a push to turn our researchware into a robust
system that we could use internally without endless crashes.
In addition to working on my own research, I spent most of a
year fixing bugs, which gave me an education in the system
that couldn’t have been duplicated any other way. The end
result was that we had working software and all of the students
involved had a practical understanding of maintainable code.

Additionally, the original author got useful feedback on the
quality of what he or she had written.

Sixth, we should make it clear to our students that “functionality
first” is not an acceptable design paradigm. As part of that, we
should discourage participation in functionality-only program-
ming competitions and work to develop maintainability-focused
ones. (See below for how industry can help with this goal.)

Finally, I believe that all schools should require a software
engineering course as part of the standard curriculum, and
that the course should teach style and maintainability.

Industry’s Contribution
Although our post-secondary educational system carries the
primary burden of developing new computer scientists, industry
can do some things to help change the current situation.

First, when interviewing job candidates, especially new gradu-
ates, find ways to discover whether they can write good code.
Famous puzzles may tell you how someone approaches a tricky
problem, but they will do little to reveal whether their solu-
tion will be something your company can live with for the next
decade. How much of your code base was written by a whiz kid
who left an unmaintainable mess behind? Wouldn’t it have been
better to hire someone who worked slightly slower, but produced
solid, readable code with a simple API? If you test on style, you
might just find that jewel of an employee. And I can promise you
that if you regularly test new graduates on the quality of their
code, word will get back to their younger peers, who will then
develop a strong interest in learning how to pass those tests.

Second, encourage professors to get more industry experience,
ideally experience working on existing code. One way to do this
is to reach out to faculty—especially young faculty—to offer them
sabbatical positions or consulting opportunities. Many profes-
sors enjoy coding, are unable to do it on a daily basis, and would
welcome the chance to get their hands dirty from time to time.
There is nothing like experience with existing code—especially
poor code—to teach the importance of style.

Third, think about ways to promote style as a first-order factor.
Academia and industry sponsor lots of exciting programs for
young students, such as the Google Summer of Code, the ACM
Programming Competition, and the Netf lix Prize. Unfortu-
nately, the usual emphasis is on “Does it work?” rather than
“Can we make this work for a decade?” A contest that required
maintainability as well as innovation would be harder to judge,
but it would do wonders to make students think about the long-
term characteristics of their work, especially if a monetary
reward were involved.

Fourth, if you don’t already do code reviews, institute them.
Programmers hate code reviews because they’re embarrass-

www.usenix.org	   J U N E 20 13  VO L . 3 8 N O. 3  9

OPINION
On Teaching Style and Maintainability

ing—which is precisely why they’re needed. Even the best coders
can benefit from an outside eye, and if the code is good, we can
all learn from it. This is one of the reasons pair programming
has become so popular; it offers an instant, built-in code review
process. But even in a pair-programming shop, separate code
reviews can further improve quality.

What Can You Do?
Not all of us are in a position to make the changes suggested
above. But we can still change ourselves and try to produce bet-
ter code. First, read a good book on style. I’m fond of Kernighan
and Plauger’s dated but still relevant classic, The Elements of
Programming Style, but there are many alternatives.

Second, learn from the programs you work with. Has the author
made your life easy or difficult? Can you figure out what a func-
tion does without digging deep into the call tree? Is the informa-
tion you want buried in a maze of macros, function pointers and
virtual function calls, global variables, and messy data struc-
tures? Or is everything laid out so elegantly that you wish you
could take credit?

Third, when you return to one of your own programs from
several years ago, do the same analysis, and be ruthless. Can you
figure out what you did, and why you did it? Is there a simpler
and clearer way to do things? Has your code grown and changed
over time, so that some code paths are obsolete?

Fourth, show some of your code to a colleague and ask for hon-
est feedback. Do you have enough comments? Are your variable
names open to misinterpretation? Does it take ten minutes to
figure out that clever for loop you were so proud of, the one with
the null body and the tricky use of the side effects of ++? I got
slapped down for that last one just a couple of weeks ago, and
justifiably so. There’s always room for learning.

Is It Hopeless?
As I said above, I don’t think we are facing an easy task. When
the ACM contest was first announced, I wrote a letter (I believe
to the ACM Transactions on Computer Systems; unfortunately
the ACM Digital Library doesn’t seem to archive letters) sug-
gesting that encouraging students to write hacked-up throw-
away code was unwise, and perhaps the contest should instead
reward what real programmers do. The suggestion was disdain-
fully dismissed, and 35 years later we are still lionizing under-
graduates for solving toy puzzles with incomprehensible code
that will be discarded the next day, never to be seen again. Is this
really what we want to encourage? Are these the people you want
to hire?

Nevertheless, I think progress can be made. Some of my sug-
gestions above are easy to implement; none are impossible. We
should start with baby steps, changing the world one discarded

goto at a time. In fact, we have already started; the worst ideas of
my youth are long gone, and no modern programmer would dare
write unindented code (though, sadly, inconsistency is still ram-
pant). So let us go forth from here and set an example by insist-
ing that our students will learn to code well, our own code will
be exemplary, and our new hires will earn their jobs by showing
that what they write will outlast their careers.

xkcd

xkcd.com

