
STORAGE

	 ;login: FEBRUARY 2013   5

Jeremy Elson received his
PhD from UCLA in 2003. He
has worked in wireless sensor
networks, time synchronization,

online mapmaking, CAPTCHAs, and distrib
uted storage. He also enjoys riding bicycles,
flying airplanes, and DIY electronics.
jelson@microsoft.com

Ed Nightingale has worked at
Microsoft since graduating with
a PhD from the University of
Michigan in 2007. Ed’s favorite

research areas include operating systems
and distributed systems. Outside of work, Ed
enjoys bicycling, reading, and attempting to
keep up with his children.
ed.nightingale@microsoft.com

There’s been an explosion of interest in Big Data—the tools and techniques for han-
dling very large data sets. Flat Datacenter Storage (FDS) is a new storage project at
Microsoft Research. We’ve built a blob store meant for Big Data, which scales to tens
of thousands of disks, makes efficient use of hardware, and is fault tolerant, but still
maintains the conceptual simplicity and flexibility of a small computer.

To make this idea concrete, consider the problem of “little data.” From a systems
perspective, little data is essentially a solved problem. The perfect little-data
computer has been around for years: a single machine with multiple processors
and disks interconnected by something like a RAID controller. For I/O-intensive
workloads, such a computer is ideal. When applications write, the RAID control-
ler splits the writes up and stripes them over all the disks. There might be a small
number of writers writing a lot, or a large number of writers writing a little bit, or a
mix of both. The lulls in one writer are filled in by the bursts in another, giving us
good statistical multiplexing. All the disks stay busy, and high utilization means
we’re extracting all the performance we can from our hardware. Reads can also
exploit the striped writes. Even if some processes consume data slowly and others
consume it quickly, all the disks stay busy, which is what we want.

Writing software for this computer is easy, too. How many physical disks there are
doesn’t matter; programmers can pretend there’s just one big one. Files written by
any process can be read by any other without caring about locality. If we’re trying
to attack a large problem in parallel (for example, trying to parse a giant log file) the
input doesn’t need to be partitioned in advance. All the workers drain a global pool
of work; when it’s exhausted, they all finish at about the same time. This prevents
stragglers and means the job finishes sooner. We call this dynamic work allocation.

Another benefit of the little-data computer is that it’s easy to adjust the ratio of
processors to disks by adding more of whichever is needed. An administrator
can buy machine resources to match the expected workload, fully and efficiently
making use of the hardware budget.

This machine has one major drawback: it doesn’t scale. We can add a few dozen
processors and disks, but not thousands. The limitation lies in the fact that such a
system relies on a single, centralized I/O controller. Roughly, the controller is doing
two things:

Flat Datacenter Storage
J E R E M Y E L S O N A N D E D M U N D B . N I G H T I N G A L E

6   ;login: VOL. 38, NO. 1

u	 It manages metadata. When a process writes, the controller decides how the
write should be striped, and records enough state so that reads can find the
data later.

u	 It physically routes the data between disks to processors—actually transporting
the bits.

In FDS, we’ve built a blob store that fully distributes both of these tasks. This
means we can build a cluster that has the essential properties of the ideal little-
data machine, but can scale to the size of a datacenter. To maintain conceptual
simplicity, computation and storage are logically separate. There is no affinity,
meaning any processor can access all data in the system uniformly—that’s why
we call it “flat;” however, it still achieves very high I/O performance that has come
to be expected only from systems that couple storage and computation together,
such as MapReduce, Dryad, and Hadoop.

We’ve developed a novel way of distributing metadata. In fact, the common case
read and write paths go through no centralized components at all. We get the
bandwidth we need from full bisection bandwidth Clos networks, using novel
techniques to schedule traffic.

With FDS, we’ve demonstrated very high read and write performance. In a single-
replicated cluster, a single process in read or write loop can achieve more than 2
GBps all the way to the remote disk platters. In other words, FDS applications can
write to remote disks faster than many systems can write locally to a RAID array.

Disks can also talk to each other at high speed, meaning FDS can recover from
failed disks very quickly. For example, in one test with a 1,000-disk cluster, we
killed a machine with seven disks holding a total of about two-thirds of a terabyte;
FDS brought the lost data back to full replication in 34 seconds.

Finally, we’ve shown that FDS can make applications very fast. We wrote a straight-
forward sort application on top of FDS that beat the world record for disk-to-disk
sorting in 2012. Our general-purpose remote blob store beat previous implementa-
tions that exploited local disks. We’ve also experimented with applications from
other domains, including stock market analysis and serving an index of the Web.

The Basics
In FDS, all blobs are identified with a simple GUID. Each blob contains 0 or more
allocation units we call tracts. Tracts are numbered sequentially, starting from 0
(Figure 1).

All tracts in a system are the same size. In most of our clusters, a tract is 8 MB;
we’ll see later why we picked that size. A tract is the basic unit of reading and
writing in FDS.

The programming interface is simple; it has only about a dozen calls, such as
CreateBlob, ReadTract, and WriteTract. The interface is designed to be asyn-
chronous, meaning that the functions don’t block, but rather call a callback when
they’re done. A typical high-throughput FDS application will start out by issuing a
few dozen reads or writes in parallel, then issue more as the earlier ones complete.
We call applications using the FDS API the FDS clients.

In addition to clients, there are two other types of actors in FDS. The first is the
tractserver, lightweight software that sits between a raw disk and the network,
accepting commands from the network such as “read a tract” and “write a tract.”

	 ;login: FEBRUARY 2013 Flat Datacenter Storage   7

There’s also a special node called the metadata server, which coordinates the
cluster and helps clients rendezvous with tractservers.

The existence of tractservers and the metadata server is invisible to programmers.
The API just talks about blobs and tract numbers. Underneath, our library contacts
the metadata server as necessary and sends read and write messages over the
network to tractservers.

Metadata Management
To understand how FDS handles metadata, it’s useful to consider the spectrum of
solutions in other systems.

On one extreme, we have systems like GFS and Hadoop that manage metadata
centrally. On essentially every read or write, clients consult a metadata server
that has canonical information about the placement of all data in the system. This
gives administrators excellent visibility and control; however, it is also a central-
ized bottleneck that has exerted pressure on these systems to increase the size of
writes. For example, GFS uses 64 megabyte extents, nearly an order of magnitude
larger than FDS tracts. This makes it harder to do fine-grained load balancing like
the ideal little-data computer does.

On the other end of the spectrum are distributed hash tables. They’re fully decen-
tralized, but all reads and writes typically require multiple trips over the network
before they find data. Additionally, failure recovery is relatively slow because
recovery is a localized operation among nearby neighbors in the ring.

In FDS, we tried to find a spot in between that gives us some of the best properties
of both extremes: one-hop access to data and fast failure recovery without any
centralized bottlenecks in common-case paths.

FDS does have a centralized metadata server, but its role is limited. When a client
first starts, the metadata server sends some state to the client. For now, think of
this state as an oracle.

When a client wants to read or write a tract, the underlying FDS library has two
pieces of information: the blob’s GUID and the tract number. The client library
feeds those into the oracle and gets out the IP addresses of the tractservers respon-
sible for replicas of that tract. In a system with more than one replica, reads go to
one replica at random, and writes go to all of them.

The oracle’s mapping of tracts to tractservers needs two important properties.
First, it needs to be consistent: a client reading a tract needs to get the same answer
as the writer got when it wrote that tract. Second, it has spread load uniformly.
To achieve high performance, FDS clients have lots of tract reads and writes
outstanding simultaneously. The oracle needs to ensure (or, at least, make it
likely) that all of those operations are being serviced by different tractservers.
We don’t want all the requests going to just one disk if we have ten of them.

Figure 1: Blobs and tracts

8   ;login: VOL. 38, NO. 1

Once a client has this oracle, reads and writes all happen without contacting the
metadata server again. Because reads and writes don’t generate metadata server
traffic, we can afford to do a large number of small reads and writes that all go to
different spindles, even in large-scale systems, giving us really good statistical
multiplexing of the disks—just like the little-data computer.

This technique gives us the f lexibility to make writes as small as we need to. For
throughput-sensitive applications, we use 8 MB tracts: large enough to amortize
seeks and make random reading and writing almost as fast as doing so sequen-
tially. We have also experimented with seek-bound workloads, where we reduced
the tract size all the way down to 64 KB. That’s hard with a centralized metadata
server but no problem with our oracle.

So, what is this oracle? Simply, it is a table of all the disks in the system, collected
centrally by the metadata server. We call this table the tract locator table, or TLT.
The table has as many columns as there are replicas; the example in Figure 2
shows a triple-replicated system. In single-replicated systems, the number of
rows in this table grows linearly with the number of disks in the system. In multi-
ply replicated systems, it grows as n2; we’ll see why a little later.

For each read or write operation, the client finds a row in this table by taking
the blob GUID and tract number and deterministically transforming them into
a row index:

Table_Index=(Hash(Blob_GUID) + Tract_Number) mod TLT_Length

As long as readers and writers are using consistent versions of the table, the map-
pings they get will also be consistent. (We describe how we achieve consistent
table versioning in our full paper [3].) We hash the blob’s GUID so that independent
clients start at “random” places in the table, even if the GUIDs themselves are not
randomly distributed.

A critical property of this table is that it only contains disks, not tracts. In other
words, reads and writes don’t change the table. This means clients can retrieve it
from the metadata server once, then never contact the metadata server again. The
TLT only changes when a disk fails or is added.

There’s another clever thing we can do with the tract locator table: use it to fully
distribute the per-blob metadata, such as each blob’s length and permission bits.
We store this in “tract -1.” Clients find the metadata tract the same way that they
find regular data, just by plugging -1 into the tract locator formula. This means
that the metadata is spread pseudo-randomly across all tractservers in the system,
just like the regular data.

Tractservers have support for consistent metadata updates. For example, imagine
that several writers are trying to append to the same blob. In FDS, each executes
an FDS function called Extend Blob. This is a request for a range of tract numbers
that can be written without conflict. The tractserver serializes the requests and
returns a unique range to each client. This is how FDS supports atomic append.

Unlike data writes, which go directly from the client to all replicas, metadata
operations in multiply replicated systems go to only one tractserver—the one in the
first column of the table. That server does a two-phase commit to the others before
returning a result to the client.

Figure 2: An example tract locator table.
Each letter represents a disk.

	 ;login: FEBRUARY 2013 Flat Datacenter Storage   9

Because we’re using the tract locator table to determine which tractserver owns
each blob’s metadata, different blobs will most likely have their metadata opera-
tions served by different tractservers. The metadata traffic is spread across
every server in the system; however, requests that need to be serialized because
they refer to the same blob will always end up at the same tractserver, thus main-
taining correctness.

Networking
So far, we’ve assumed that there was an uncongested path from tractservers to
clients. We now turn to the question of how to build such a network.

Until recently, the standard way to build a datacenter was with significant over
subscription: a top-of-rack switch might have 40 Gbps of bandwidth down to
servers in the rack, but only 2 or 4 Gbps going up to the network core. In other
words, the link to the core was oversubscribed by a factor of 10 or 20. This, of
course, was done to save money.

There has been a recent surge of research in the networking community in Clos
networks [2]. Clos networks more or less do for networks what RAID did for disks:
by connecting up a large number of low-cost, commodity routers and doing some
clever routing, building full bisection bandwidth networks at the scale of a data-
center is now economical.

In FDS, we take the idea a step further. Even with Clos networks, many comput-
ers in today’s datacenters still have a bottleneck between disks and the network.
A typical disk can read or write at about a gigabit per second, but there are four,
or 12, or even 25 disks in a typical machine, all stuck behind a single one-gigabit
link. For applications that have to move data, such as a sort or a distributed join,
this is a big problem.

In FDS, we make sure all machines with disks have as much network bandwidth as
they have disk bandwidth. For example, a machine with 10 disks needs a 10-gigabit
NIC, and a machine with 20 disks needs two of them. Of course, adding bandwidth
has a cost; depending on the size of the network, we estimate about 30% more per
machine. But as we’ll explain a little later, we get a lot more than a 30% increase in
performance for that investment.

We’ve gone through several generations of testbeds; the largest has 250 machines
and about 1,500 disks. They’re all connected using 14 top-of-rack routers and eight
spine routers. Each router has 64 10-gigabit ports. The top-of-rack routers split
their 64 ports into two halves: 32 ports connect to computers (clients or tractserv-
ers) and 32 connect to spine routers. There is a 40 Gbps connection between each
top-of-rack and spine router—four 10 Gbps ports bonded together. In aggregate,
this gives us more than 4.5 terabits of bisection bandwidth.

Unfortunately, just adding all this bandwidth doesn’t automatically produce a
storage system with good performance. Part of the problem is that in realistic
conditions, datacenter Clos networks don’t guarantee full bisection bandwidth.
They only make it stochastically likely. This is an artifact of routing algorithms
such as ECMP (equal-cost multipath routing) that select a single, persistent path
for each TCP flow to prevent packet reordering. As a result, Clos networks have a
well-known problem handling long, fat f lows. In FDS, our data layout is designed
to spread data uniformly across disks partly because of the network load that such
an access pattern generates. FDS clients use a large number of very short-lived

10   ;login: VOL. 38, NO. 1

f lows to a wide set of pseudo-random destinations, which is the ideal case for a
Clos network.

A second problem is that even a perfect Clos network doesn’t actually eliminate
congestion; it just pushes the congestion out to the edges. Good traffic shaping is
still necessary to prevent catastrophic collisions at receivers—a condition known
as incast [6].

What’s particularly unfortunate is that these two constraints are in tension. Clos
networks need short flows to achieve good load balancing, but TCP needs long
flows for its bandwidth allocation algorithm to find an equilibrium that prevents
collisions.

In FDS, we ended up doing our own application-layer bandwidth allocation using
a hybrid request-to-send/clear-to-send (RTS/CTS) scheme reminiscent of that
found in wireless networks. Large messages are queued at the sender, and the
receiver is notified with an RTS. The receiver limits the number of CTSes it allows
outstanding, thus limiting the number of senders competing for its receive band-
width. Small messages, such as control messages and RTS/CTS, are delivered over
a different TCP flow from the large messages, reducing latency by enabling them
to bypass long queues. FDS network message sizes are bimodal: large messages
are almost all about 8 MB, and most other messages are 1 KB or smaller.

Microbenchmarks
Our full paper [3] has a more thorough evaluation of FDS. Here, we’ll describe
one set of microbenchmarks: testing the speed of simple test clients that read
from or wrote to a fixed number of tractservers. We varied the number of clients
and measured their aggregate bandwidth. The clients each had a single 10 Gbps
Ethernet connection. The tractservers had either one or two, depending on how
many disks were in the server.

Figure 3 shows results from a single-replicated cluster. Note the x-axis is logarith-
mic. The aggregate read and write bandwidth go up close to linearly with the num-
ber of clients, from 1 to 170. Read bandwidth goes up at about 950 MBps per client
and write bandwidth goes up by 1,150 MBps per client. Writers saturated about
90% of their theoretical network bandwidth, and readers saturated about 74%.

Two different cluster configurations are depicted: one used 1,033 disks, and the
other used about half that. In the 1,033 disk test, there was just as much disk band-
width as there was client bandwidth, so performance kept going up as we added
more clients. In the 516 disk test, there was much more client bandwidth available

1 2 5 10 50 200

0
10
20
30
40
50
60
70

To
ta

l B
an

dw
id

th
 (G

B/
s)

Number of Clients

read
write

516 Disks

1,033 Disks

1 2 5 10 50 200

0
10
20
30
40
50
60
70

Number of Clients

read
write

Figure 3: Sequential reading and writing in
a single-replicated cluster

Figure 4: Sequential reading and
writing in a triple-replicated cluster

	 ;login: FEBRUARY 2013 Flat Datacenter Storage   11

than disk bandwidth. Because disks were the bottleneck, aggregate bandwidth kept
going up until we’d saturated the disks, then leveled off.

We also tested clients that had 20 Gbps of network bandwidth instead of 10. These
clients were able to read and write at over 2 GBps. In other words, writing remotely
over the network all the way to disk platters, these FDS clients were faster than
many systems can write to a local RAID. Decoupling storage and computation does
not have to mean giving up performance.

Figure 4 shows a similar test against a triple-replicated cluster instead of a single-
replicated cluster. Read bandwidth is about the same, but as expected, writes
saturate the disks much sooner because clients have to write three times as much
data (once for each replica). The aggregate write bandwidth is about one-third of
the read bandwidth in all cases.

Failure Recovery
The way that data is organized in a blob store has a dramatic effect on recovery
performance. The simplest method of replication is unfortunately also the slowest:
mirroring. Disks can be organized into pairs or triples that are always kept identi-
cal. When a disk fails, an exact copy of the failed disk is created using an empty
spare disk and a replica that’s still alive. This is slow because it’s constrained by
the speed of a single disk. Filling a one terabyte disk takes at least several hours,
and such slow recovery decreases durability because it lengthens the window of
vulnerability to additional failures.

We can do better. In FDS, when a disk fails, our goal is not to reconstruct an exact
duplicate of the failed disk. Instead, we ensure that somewhere in the system, extra
copies of the lost data get made, returning us to the state where there are three
copies of all data.

We exploit our fine-grained striping of data across disks, and lay out data so that
when a disk fails, there isn’t just a single disk that contains backup copies of that
disk’s data. Instead, the n disks that remain will each have about 1/nth of the data
lost. Every disk sends a copy of its small part of the lost data to some other disk that
has some free space.

Because we have a full bisection bandwidth network, all the disks can do this in
parallel, making failure recovery fast. In fact, because every disk is participating
in recovery, FDS has a nice scaling property: as a cluster gets larger, recovery goes
faster. This is just the opposite of systems that use simple mirroring, where larger
volumes require longer recovery times.

Implementing this scheme using the tract locator table is relatively straight-
forward. We construct a table such that every possible pair of disks appears in
a row of the table. This is why, in replicated clusters, the number of rows in the
table grows as n2. We can optionally add more columns for more durability, but to
get the fastest recovery speed, we never need more than n2 rows.

When a disk fails, the metadata server first selects a random disk to replace the
failed disk in every row of the table. Then, it selects one of the remaining good disks
in each row to transfer the lost data to the replacement disk. (Additional details are
described in our paper [3].)

12   ;login: VOL. 38, NO. 1

We tested failure recovery in a number of configurations, in clusters with both
100 and 1,000 disks, and killing both individual disks and all the disks in a single
machine at the same time (Table 1).

In our largest test, we used a 1,000-disk cluster and killed a machine with seven
disks holding a total of 655 GB. All the lost data was recovered in 34 seconds.

More interesting is that every time we made the cluster larger, we got about
another 40 MBps per disk of aggregate recovery speed. That’s less than half the
speed of a disk, but keep in mind that’s because every disk is simultaneously read-
ing the data it’s sending, and writing to its free space that some other disk is filling.
Extrapolating these numbers out, we estimate that if we lost a 1 TB disk out of a
3,000-disk cluster, we’d recover all the data in less than 20 seconds.

MinuteSort
We’ve built several big-data applications on top of FDS from domains that include
stock market analysis and serving an index of the Web. These applications are
described in our recent paper on FDS [3]. In this article, we’ll focus on just one: We
set two world records in 2012 for disk-to-disk sorting using a small FDS application.

MinuteSort is a test devised by a group led by the late Jim Gray [1]. The question is:
given 60 seconds, how much randomly distributed data can be shuffled into sorted
order? Because the test was meant as an I/O test, the rules specify the data must
start and end in stable storage. We competed in two divisions: one for general-
purpose systems, and one for purpose-built systems that were allowed to exploit
the specifics of the benchmark.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100 120M
ile

st
on

e
C

om
pl

et
io

n
Ti

m
e

(s
)

Number of Nodes Complete

800GB Sort Before Dynamic Work Allocation

Input read complete

Shuffled data received from all peers

Output complete

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100 120M
ile

st
on

e
C

om
pl

et
io

n
Ti

m
e

(s
)

Number of Nodes Complete

800GB Sort After Dynamic Work Allocation

Input read complete

Shuffled data received from all peers

Output complete

Figure 5: Visualization of the time to reach three milestones in the completion of a sort. The
results are shown before (left) and after (right) implementation of dynamic work allocation.
Both experiments depict 115 nodes sorting 800 GB.

Disk Count 100 1,000

Disks Failed 1 1 1 1 7

Total Stored (TB) 4.7 9.2 47 92 92

GB/disk 47 92 47 92 92

GB Recovered 47 92 47 92 655

Recovery Time (s) 19.2±0.7 50.5±16.0 3.3±0.6 6.2±0.4 33.7±1.5

Table 1: Mean and standard deviation of recovery time after disk failure in a triple-replicated
cluster. The high variance in one experiment is due to a single 80 sec. run.

	 ;login: FEBRUARY 2013 Flat Datacenter Storage   13

In the general-purpose division, the previous record, which stood for three years,
was set by Yahoo! using a large Hadoop cluster [4] consisting of about 1,400
machines, and about 5,600 disks. With FDS, using less than one-fifth of the com-
puters and disks, we nearly tripled the amount of data sorted, which multiplies out
to a 15x improvement in disk efficiency. The gain came from the fact that Yahoo!’s
cluster, like most Hadoop-style clusters, had serious oversubscription both from
disk to network, and from rack to network core. We attacked that bottleneck, by
investing, on average, 30% more money per machine for more bandwidth, and
harnessed that bandwidth using the techniques described earlier. The result
is that instead of a cluster having mostly idle disks, we built a cluster with disks
working continuously.

In the specially optimized class, the record was set last year by UCSD’s Triton-
Sort [5]. They wrote a tightly integrated and optimized sort application that did a
beautiful job of squeezing everything they could out of their hardware. They used
local storage, so they did beat us on CPU efficiency, but not on disk efficiency. In
absolute terms, we set that record by about 8%. What distinguishes our sort is that
it was just a small application sitting on top of FDS, a general-purpose blob store
with no sort-specific optimizations.

Dynamic work allocation was a key technique for making our sort fast. We noted
earlier that one advantage of ignoring locality constraints—as in the little-data
computer—is that all workers can draw work from a global pool, preventing strag-
glers. Early versions of our sort didn’t use dynamic work allocation; we just divided
the input file evenly among all the nodes.

As seen in the time diagram in Figure 5 (left), stragglers were a big problem. Each
line represents one stage of the sort. A horizontal line would mean all nodes fin-
ished that stage at the same time, which would be ideal. Initially, the red (lowest
line) stage was far from ideal. About half the nodes would finish the stage within
25 seconds and a few would straggle along for another 30. This was critical because
there was a global barrier between the red stage and the green stage (middle line
in graph).

We knew the problem did not lie in the hardware because different nodes were
the stragglers in each experiment. We concluded that we had built a complex
distributed system with a great deal of randomness; a few nodes would always get
unlucky. We switched to using dynamic work allocation. In Figure 5 (right), each
node would initially process a tiny part of the input. When it was almost done, it
would ask the head sort node for more work. This dramatically reduced stragglers,
making the whole job faster. A worker that finished early would get more work
assigned and unlucky nodes would not. This was entirely enabled by the fact that
FDS uses a global store; clients can read any part of the input they want, so shuf-
fling the assignments around at the last second really has no cost.

Conclusion
FDS gives us the agility and conceptual simplicity of a global store, but without the
usual performance penalty. We can write to remote storage just as fast as other
systems can write to local storage, but we’re able to discard the locality constraints.

This also means we can build clusters with very high utilization; we can buy as many
disks as we need for I/O bandwidth, and as many CPUs as we need for processing
power. Individual applications can use resources in whatever ratio they need. We

14   ;login: VOL. 38, NO. 1

do have to invest more money in the network. In exchange, we unlock the potential
of all the other hardware we’ve paid for, both because we’ve opened the network
bottleneck and because a global store gives us global statistical multiplexing.

Today, many data scientists have the mindset that certain kinds of high-bandwidth
applications must fit into a rack if they’re going to be fast, but a rack just isn’t big
enough for many big-data applications. With FDS, we’ve shown a path around that
constraint. FDS doesn’t just make today’s applications faster. FDS may let us imag-
ine new kinds of applications, too.

Acknowledgments

Dave Maltz built our first Clos networks and taught us how to build our own.
Johnson Apacible, Rich Draves, and Reuben Olinsky were part of the sort record
team. Trevor Eberl, Jamie Lee, Oleg Losinets, and Lucas Williamson provided
systems support. Galen Hunt provided a continuous stream of optimism and
general encouragement. We also thank Jim Larus for agreeing to fund our initial
14-machine cluster on nothing more than a whiteboard and a promise, allowing
this work to flourish.

References

[1] D. Bitton, M. Brown, R. Catell, S. Ceri, T. Chou, D. DeWitt, D. Gawlick, H. Garcia-
Molina, B. Good, J. Gray, P. Homan, B. Jolls, T. Lukes, E. Lazowska, J. Nauman, M.
Pong, A. Spector, K. Trieber, H. Sammer, O. Serlin, M. Stonebraker, A. Reuter, and
P. Weinberger, “A Measure of Transaction Processing Power,” Datamation, vol. 31,
no. 7 (April 1985), pp. 112–118.

[2] A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, “Towards a Next
Generation Data Center Architecture: Scalability and Commoditization,” Proceed-
ings of the ACM Workshop on Programmable Routers for Extensible Services of
Tomorrow, PRESTO ’08 (ACM, 2008), pp. 57–62.

[3] E.B. Nightingale, J. Elson, J. Fan, O. Hofmann, J. Howell, and Y. Suzue, “Flat
Datacenter Storage,” Proceedings of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’12), October 2012.

[4] O. O’Malley and A.C. Murthy, “Winning a 60 Second Dash with a Yellow
Elephant,” 2009: http://sortbenchmark.org/Yahoo2009.pdf.

[5] A. Rasmussen, G. Porter, M. Conley, H. Madhyastha, R.N. Mysore, A. Pucher,
and A. Vahdat, “TritonSort: A Balanced Large-Scale Sorting System,” 8th USE-
NIX Symposium on Networked Systems Design and Implementation (NSDI ’11),
Boston, MA, April 2011.

[6] V. Vasudevan, H. Shah, A. Phanishayee, E. Krevat, D. Andersen, G. Ganger,
and G. Gibson, “Solving TCP Incast in Cluster Storage Systems,” 7th USENIX
Conference on File and Storage Technologies (FAST ’09), San Francisco, CA,
February 2009.

