
www.usenix.org	   O C TO B ER 20 13  VO L . 3 8 N O. 5  11

vPipe: One Pipe to Connect Them All
S A H A N G A M A G E , R A M A N A K O M P E L L A , A N D D O N G Y A N X U

Sahan Gamage is a Ph.D.
candidate in the Computer
Science Department at Purdue
University and is advised by
Professors Dongyan Xu and

Ramana Kompella. His research focuses on
improving I/O performance in virtual machines
in cloud environments. Sahan received an M.S.
in Computer Science from Purdue University
and a B.S. in Computer Science from University
of Moratuwa, Sri Lanka. sgamage@purdue.edu

Ramana Kompella is an
Associate Professor in the
Computer Science Department
at Purdue University. He directs
the Systems and Networking

(SYN) Lab at Purdue, conducting research
on various networking research problems in
cloud computing, virtualization, datacenter
networking, and software-defined networking.
Before coming to Purdue, he obtained his Ph.D.
from UCSD. rkompella@purdue.edu

Dongyan Xu is a Professor and
University Faculty Scholar in the
Computer Science Department
at Purdue University. He
leads the FRIENDS Lab at

Purdue, conducting research in virtualization
technologies, cloud computing, and computer
systems security and forensics. He received a
Ph.D. in Computer Science from the University
of Illinois at Urbana-Champaign in 2001.
dxu@cs.purdue.edu

Many enterprises use the cloud to host applications such as Web
services, big data analytics, and storage, which involve significant
I/O activities, moving data from a source to a sink, often with-

out even any intermediate processing; however, cloud environments tend to
be virtualized, which introduces a significant overhead for I/O activity as
data needs to be moved across several protection boundaries. CPU sharing
among virtual machines (VMs) introduces further delays into the overall
I/O processing data flow. In this article, we present an abstraction called
vPipe to mitigate these problems. vPipe introduces a simple “pipe” that can
connect data sources and sinks, which can be either files or TCP sockets, at
the virtual machine monitor (VMM) layer. Shortcutting the I/O at the VMM
layer achieves significant CPU savings and avoids scheduling latencies that
degrade I/O throughput.

Cloud computing platforms such as Amazon EC2 support a large number of real businesses
hosting a wide variety of applications. For instance, several popular companies (e.g., Pinterest,
Yelp, Netflix) host large-scale Web services on the EC2 cloud. Many enterprises (e.g., Four-
square) also use the cloud for running analytics and big data applications using the MapRe-
duce framework. Companies such as Dropbox also use the cloud for storing customers’ files.
While these applications are quite diverse in their functionality and the services they offer,
they share one common characteristic: they all involve a significant number of I/O activities,
moving data from one I/O device (source) to another (sink). The source or sink can be either
the network or the disk and typically varies across applications (see Table 1). Although an
application may sometimes process or modify data after it reads from the source and before
it writes to the sink, in many cases it may merely relay the data without any processing.

Meanwhile, cloud environments use virtualization to achieve high resource utilization and
strong tenant isolation. Thus, cloud applications/services are executed in virtual machines
that are multiplexed over multiple cores of physical machines. Further, there is a lot of
variety in the CPU resources offered to individual VMs. For instance, Amazon EC2 supports
small, medium, large, and extra large instances, which are assigned 1, 2, 4, and 8 EC2 com-
pute units, respectively, with each EC2 unit roughly equivalent to a 1 GHz core [1]. Because
modern commodity cores run at 2–3 GHz, a core may be shared by more than one instance.

Now, imagine running the above I/O-intensive applications in such CPU-sharing instances
in the cloud. As an example, let us focus on a simple Web application that receives an HTTP
request from a client that results in reading a file from the disk and then writing it to a net-
work socket. The flow of data, as shown in Figure 1(a), involves reading the file’s data blocks
into the application after they cross the VMM and the guest kernel boundaries, and then
writing them into the TCP socket, causing the data to pass again through the same protec-
tion boundaries before reaching the physical NIC.

There are two main problems with this simple data flow model. First, transferring data
across all the protection layers incurs significant CPU overhead, which affects the cloud
provider (provisions more CPU for hypervisor) as well as the tenant (costs more for the job).

12    O C TO B ER 20 13  VO L . 3 8 N O. 5 	 www.usenix.org

CLOUD
vPipe: One Pipe to Connect Them All

Using zero-copy system calls such as mmap() and sendfile()
in the guest VM, as shown in Figure 1(b), would clearly reduce
the copy overhead to some extent, but not by much, because the
major portion of the overhead (e.g., virtual interrupts, protection
domain switching) is actually incurred when data crosses the
VMM-VM boundary. Second, and perhaps more importantly,
because of CPU sharing with other VMs, this VM may not
always be scheduled, which will introduce delays in the data
flow, resulting in significant degradation of performance. For
more information about how VM scheduling affects TCP, refer
to [5] and [3].

With vPipe, we propose a new abstraction to address both of
these problems—i.e., eliminate CPU overhead and reduce I/O
processing delay—in virtualized clouds with CPU sharing.
The key idea of vPipe is to empower the VMM to “pipe” data
directly from the source to the sink without involving the guest
VM. As shown in Figure 1(c), vPipe incurs fewer copies across
protection boundaries, and completely eliminates the more
costly VMM-VM data transfer overhead, thereby reducing CPU
usage significantly, which in turn saves money for both the
cloud provider and the tenant. Furthermore, because the VMM
is often running in a dedicated core, any scheduling latencies
experienced by the guest VM due to CPU sharing have virtually
no impact on I/O performance.

Although our idea of vPipe makes intuitive sense, realizing it is
not that straightforward because the meta-information regard-
ing the source and sink of a “vPipe” resides in the VM context.
We need to create a new interface to enable the application to,
with support of the guest kernel, pass this information to the
VMM and instruct it to create the source-sink pipe. For example,
the VM needs to identify the physical block identifiers of the file
and establish the TCP socket, which can then be passed down
to the VMM layer for establishing the pipe. For applications
that insert new data into the data stream, there also must be
sufficient flexibility in vPipe to allow the VMM and VM to take
control of the pipe. For example, HTTP responses are typically
preceded by an HTTP response header; so the Web server first
needs to write the HTTP header to the sink (i.e., TCP socket),

call vPipe to transfer control to the VMM layer to pipe the file to
the TCP socket, and then transfer the control back (e.g., to keep
the connection alive for persistent HTTP).

We describe how vPipe works and show the effectiveness of
vPipe using a proof-of-concept implementation of a simple disk-
to-network vPipe in Xen/Linux with the example of a Web server
serving static files to clients.

Creating an I/O Shortcut at VMM
The key idea behind vPipe is to create an I/O data “shortcut” at
the VMM layer when an application needs to move data from
one I/O device to another. We essentially expose a set of new
library calls (e.g., vpipe_file() similar to the UNIX sendfile())
to enable applications to create and manage this I/O shortcut.
Implementing these new calls (shown in Figure 2) requires sup-
port at the guest kernel and the VMM layer, which are provided
by two main components: (1) vPipe-vm for support in the guest
kernel; and (2) vPipe-drv for support in the driver domain (VMM
layer). Coordination across the driver domain-VM boundary
is achieved with the help of a standard inter-domain channel
(e.g., Xen uses ring buffers and event channels) that exist in any
virtualized host.

Initially, when we activate vPipe from inside the VM, the vPipe-
vm module registers a special device in the system, /dev/vpdev,
that facilitates communication between the user process and the
guest kernel via ioctl() function. This step is designed to prevent
introducing a new system call, which would in turn require
modifications to the guest kernel.

There are four main steps involved in vPipe-enabled I/O. First,
the application running inside the VM invokes the correspond-
ing vPipe call with source and sink file/socket descriptors and
blocks (we can also implement a non-blocking version of this)
until it is completed. Second, the vPipe-vm component validates
the file/socket descriptors and dereferences them to obtain the
corresponding information about them (e.g., block IDs, socket
structures) that is then passed on to the driver domain. Third,
the vPipe-drv component uses this information and performs

Application Data Source Data Sink

Web server hosting
static files

Disk TCP socket

User uploading a file to
cloud storage

TCP socket Disk

File backup service Disk Disk

Web proxy server or a
load balancer

TCP socket TCP socket

Table 1: I/O sources and sinks for typical cloud applications Figure 1: I/O data flow for a Web server

www.usenix.org	   O C TO B ER 20 13  VO L . 3 8 N O. 5  13

CLOUD
vPipe: One Pipe to Connect Them All

the actual “piping” operation. Finally, upon completion, the
driver domain component notifies the guest OS with informa-
tion about the data transfer through the inter-domain channel.
The guest OS then passes the notification back to the application
unblocking the call.

Offloading a TCP Connection
If the vPipe source/sink is an established TCP connection,
we offload the entire TCP connection to the driver domain by
supplying essential socket details (such as IP addresses, ports,
and sequence numbers) and letting the TCP stack at the driver
domain perform TCP processing as long as vPipe exists. Most
VMMs have a fully functional TCP stack to carry out manage-
ment tasks, and we use this for our offloaded TCP sockets.

When a TCP socket is used as either end of a vPipe, we first
use the guest OS virtual file system (VFS) to translate the file
descriptor to the kernel socket structure and collect the socket
information (TCP 4-tuple, sequence numbers, and congestion
control information). We reuse congestion control information
from the VM’s socket to initialize the vPipe socket at the driver
domain, instead of restarting it from slow start. This informa-
tion is then passed on to vPipe-drv.

Upon receiving this information, vPipe-drv creates a TCP
socket using the driver domain’s TCP stack; however, we do not
use system calls such as connect() on this socket; we instead
instantiate the kernel socket structure of the new socket using
the original connection’s metadata from vPipe-vm. There is an
additional issue we need to address: the need to add a static route
entry in the driver domain’s IP routing table to route the packets
to the local TCP/IP stack if the packets match the 4-tuple
described above, otherwise they will go directly to the guest VM.

Finally, we mark the socket as “established,” which informs the
driver domain’s TCP stack that the socket is ready to receive
packets. vPipe-drv can then perform standard socket operations
such as send() and recv() on this socket.

Offloading a File I/O Operation
If the vPipe source/sink is a file, similar to the socket, we use
VM’s file system to obtain metadata about the file data blocks
and transfer this information to the driver domain where either
the reading or writing of the data blocks is carried out. Unlike
TCP packets, file metadata is stored separately from the actual
data, in the form of separate disk blocks (e.g., inode blocks).
Once the metadata is passed on from the VM level, for the driver
domain to access the corresponding file by simply using the
physical block identifiers is straightforward.

When the source of a vPipe is a file, vPipe-vm will first locate
the file’s inode using the file descriptor. Then vPipe-vm uses
file system-specific functions and device information from the
inode to obtain the file’s physical data block identifiers. This
information is then encapsulated in a vPipe custom data struc-
ture, along with number of bytes to read and offset of the first
byte to transfer, and passed to the driver domain via the commu-
nication channel.

Once vPipe-drv receives this information, it prepares a set of
block I/O operation descriptors using a preallocated set of pages
and the block identifiers supplied by vPipe-vm and submits them
to the emulated block device.

Writing to a file involves either creating a new file, appending to
an existing file, or overwriting an existing file. When overwrit-
ing a file, we can use the same method as reading the file to get
the file block identifiers. But when we are creating a new file or
appending to an existing file, we need to request the guest’s file
system to create new block identifiers for new data. This is done
by vPipe-vm requesting the guest file system to create or update
the inode for the new data blocks with an empty set of data
blocks. This will generate a new set of block identifiers that will
be transferred to vPipe-drv, where the actual writing of the data
blocks will be performed.

Connecting the Dots
When vPipe-drv receives a vPipe request from the VM, it creates
a “pipe descriptor” associated with that operation. This descrip-
tor contains metadata describing each source/sink and two
functions: a read function that implements one of the above read
strategies, and a write function that implements one of the write
strategies depending on the source and the sink. A free thread is
picked up from the thread pool, and this thread will call the read
function using the source’s metadata. As data returns from the
source, the thread will call the write function to output the data
using the metadata of the sink.

Figure 2: vPipe architecture

14    O C TO B ER 20 13  VO L . 3 8 N O. 5 	 www.usenix.org

CLOUD
vPipe: One Pipe to Connect Them All

Sharing the Driver Domain
vPipe poses one more challenge: because the actual I/O opera-
tions are performed by vPipe-drv, we should “charge” the work
done by the worker threads in the driver domain (Figure 2) to
the VMs requesting vPipe-enabled I/O. Lack of driver domain
access accounting and control will lead to unfairness among the
requesting VMs. To address this problem, we propose a simple
credit-based system. Each VM-specific thread pool in the driver
domain is allocated a certain amount of credits based on the pri-
ority (weight) of the VM. As the threads execute, they consume
the allocated credits based on the number of bytes transferred.
When the credits run out, the corresponding worker threads will
block until a timer task adds more credits to them.

vPipe on Xen/Linux
We implemented a prototype of vPipe on Xen 4.1 as the virtu-
alization platform and Linux 3.2 as the kernel of VMs and the
driver domain. vPipe-vm is implemented as a loadable kernel
module. Because it uses standard Linux VFS functions already
exposed to kernel modules to manipulate file descriptors and
sockets, vPipe-vm requires no changes to the guest kernel. This
makes vPipe-vm attractive for customers, because no kernel
recompilation is required for using vPipe.

We add a similar loadable kernel module in Xen’s driver domain
to implement vPipe-drv; however, we must make a few small
changes in the main kernel code, such as adding special func-
tions to create offloaded sockets and adding static routes.

We implement the driver domain-VM communication channel
as a standard Xen device with a ring buffer and an event channel.

Improved lighttpd Throughput
lighttpd [2] is a highly scalable lightweight Web server that
we adapt to vPipe. To do so, we just replaced “sendfile()” with
“vpipe_file()” in the lighttpd source code and recompiled it.
Figure 3 shows the average I/O throughput reported by httperf for
different file sizes, when the VM running lighttpd is co-located
with two other VMs. Whereas lighttpd using vPipe shows
throughput improvement for all file sizes tested, improvement
for larger files tends to be greater (up to 3.4×). For smaller files,
the overhead of offloading the connection and the file block
information to the driver domain affects the overall time, and
hence the throughput improvement is comparatively less than
that for large files.

CPU Savings by vPipe
Figure 4 shows the overall average CPU utilization of both the
driver domain and the VM when transferring a 1 GB file. As
expected, the VM’s CPU utilization for read-write mode is the
highest because it requires copying data across all layers. The
sendfile() system call eliminates the kernel to userland copying
and, hence, its VM CPU utilization is less than that of the read-
write mode. vPipe incurs the least CPU utilization at VM level
because there is no work to be done in the VM context once the
operation is offloaded to the driver domain.

With vPipe offloading the I/O processing task to the driver
domain, we would expect that the driver domain CPU utilization
for vPipe mode would be the highest. (Somewhat) surprisingly,
this is not the case, as shown in Figure 4. This is because, with
vPipe, we eliminate the data processing by the device emulation

Figure 3: lighttpd throughput improvement

Figure 4: CPU savings by vPipe

www.usenix.org	   O C TO B ER 20 13  VO L . 3 8 N O. 5  15

CLOUD
vPipe: One Pipe to Connect Them All

layer at the driver domain, which is required to transfer disk
blocks and network packets to and from the VM in the other
two modes.

Wrapping Up
vPipe is a new I/O interface for applications in virtualized
clouds, which mitigates virtualization-related performance
penalties by shortcutting I/O operations at the VMM layer. Our
experiments with the vPipe prototype shows that vPipe can
improve lighttpd I/O throughput while reducing CPU utilization.
vPipe also requires minimal modifications to existing applica-
tions, such as Web servers, and facilitates a simple deployment.
You can find more information about vPipe in [4].

References
[1] Amazon EC2 instance types: http://aws.amazon.com/
ec2/instance-types/.

[2] lighttpd Web server: http://www.lighttpd.net/.

[3] S. Gamage, A. Kangarlou, R. R. Kompella, and D. Xu,
“Opportunistic Flooding to Improve TCP Transmit
Performance in Virtualized Clouds,” ACM SOCC (2011).

[4] S. Gamage, R. R. Kompella, and D. Xu, “vPipe: One
Pipe to Connect Them All!” USENIX HotCloud (2013):
https://www.usenix.org/conference/hotcloud13/
vpipe-one-pipe-connect-them-all.

[5] A. Kangarlou, S. Gamage, R. R. Kompella, and D. Xu,
“vSnoop: Improving TCP Throughput in Virtualized
Environments via Acknowledgement Offload,” ACM/
IEEE SC (2010).

USENIX Member Benefits
Members of the USENIX Association receive the following benefits:

Free subscription to ;login:, the Association’s bi-monthly print magazine, and ;login: logout,
our Web-exclusive bi-monthly magazine. Issues feature technical articles, system ad-
ministration articles, tips and techniques, practical columns on such topics as security,
Perl, networks, and operating systems, book reviews, and reports of sessions at USENIX
 conferences.

Access to ;login: online from October 1997 to the current month:
www.usenix.org/publications/login/

Discounts on registration fees for all USENIX conferences.

Special discounts on a variety of products, books, software, and periodicals:
www.usenix.org/member-services/ discounts

The right to vote on matters affecting the Association, its bylaws, and election of its
 directors and officers.

For more information regarding membership or benefits,
please see www.usenix.org/membership-services
or contact office@usenix.org.
Phone: 510-528-8649

