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FILE SYSTEMS AND STORAGE

Analysis of HDFS under HBase
A Facebook Messages Case Study
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Large-scale distributed storage systems are exceedingly complex 
and time-consuming to design, implement, and operate. As a result, 
rather than cutting new systems from whole cloth, engineers often 

opt for layered architectures, building new systems upon already-existing 
ones to ease the burden of development and deployment. In this article, we 
examine how layering causes write amplication when HBase is run on top 
of HDFS and how tighter integration could result in improved write perfor-
mance. Finally, we take a look at whether it makes sense to include an SSD to 
improve performance while keeping costs in check.

Layering, as is well known, has many advantages [6]. For example, construction of the 
Frangipani distributed file system was greatly simplified by implementing it atop Petal, a 
distributed and replicated block-level storage system [7]. Because Petal provides scalable, 
fault-tolerant virtual disks, Frangipani could focus solely on file-system-level issues (e.g., 
locking); the result of this two-layer structure, according to the authors, was that Frangipani 
was “relatively easy to build.”

Unfortunately, layering can also lead to problems, usually in the form of decreased perfor-
mance, lowered reliability, or other related issues. For example, Denehy et al. show how naïve 
layering of journaling file systems atop software RAIDs can lead to data loss or corruption 
[2]. Similarly, others have argued about the general inefficiency of the file system atop block 
devices [4].

In this article, we focus on one specific, and increasingly common, layered storage architec-
ture: a distributed database (HBase, derived from Google’s BigTable) atop a distributed file 
system (HDFS, derived from the Google File System). Our goal is to study the interaction 
of these important systems with a particular focus on the lower layer, which leads to our 
highest-level question: Is HDFS an effective storage back end for HBase?

To derive insight into this hierarchical system, and therefore answer this question, we trace 
and analyze it under a popular workload: Facebook Messages (FM). FM is a messaging 
system that enables Facebook users to send chat and email-like messages to one another; it 
is quite popular, handling millions of messages each day. FM stores its information within 
HBase (and thus, HDFS) and hence serves as an excellent case study.

To perform our analysis, we collected detailed HDFS traces over an eight-day period on a 
subset of FM machines. These traces reveal a workload very unlike traditional GFS/HDFS 
patterns. Whereas workloads have traditionally consisted of large, sequential I/O to very 
large files, we find that the FM workload represents the opposite. Files are small (750 KB 
median), and I/O is highly random (50% of read runs are shorter than 130 KB).

We also use our traces to drive a multilayer simulator, allowing us to analyze I/O patterns 
across multiple layers beneath HDFS. From this analysis, we derive numerous insights. For 
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example, we find that many features at different layers amplify writes, and that these features 
often combine multiplicatively. For example, HBase logs introduced a 10x overhead on writes, 
whereas HDFS replication introduced a 3x overhead; together, these features produced a 30x 
write overhead. When other features such as compaction and caching are also considered, 
we find writes are further amplified across layers. At the highest level, writes account for a 
mere 1% of the baseline HDFS I/O, but by the time the I/O reaches disk, writes account for 
64% of the workload.

This finding indicates that even though FM is an especially read-heavy workload within 
Facebook, it is important to optimize for both reads and writes. We evaluate potential 
optimizations by modeling various hardware and software changes with our simulator. 
For reads, we observe that requests are highly random; therefore, we evaluate using flash 
to cache popular data. We find that adding a small SSD (e.g., 60 GB) can reduce latency by 
3.5x. For writes, we observe compaction and logging are the major causes (61% and 36%, 
respectively); therefore, we evaluate HDFS changes that give HBase special support for these 
operations. We find such HDFS specialization yields a 2.7x reduction in replication-related 
network I/O and a 6x speedup for log writes. More results and analysis are discussed in our 
FAST ’14 paper [8].

Background and Methodology
The FM storage stack is based on three layers: distributed database over distributed file 
system over local storage. These three layers are illustrated in Figure 1 under “Actual Stack.” 
As shown, FM uses HBase for the distributed database and HDFS for the distributed file 
system. HBase provides a simple API allowing FM to put and get key-value pairs. HBase 
stores these records in data files in HDFS. HDFS replicates the data across three machines 
and thus can handle disk and machine failures. By handling these low-level fault toler-
ance details, HDFS frees HBase to focus on higher-level database logic. HDFS in turn stores 
replicas of HDFS blocks as files in local file systems. This design enables HDFS to focus on 
replication while leaving details such as disk layout to local file systems. The primary advan-
tage of this layered design is that each layer has only a few responsibilities, so each layer is 
simpler (and less bug prone) than a hypothetical single system that would be responsible for 
everything.

One important question about this layered design, however, is: What is the cost of simplicity 
(if any) in terms of performance? We explore this question in the context of the FM work-
load. To understand how FM uses the HBase/HDFS stack, we trace requests from HBase to 
HDFS, as shown in the Figure 1. We collect traces by deploying a new HDFS tracing frame-
work that we built to nine FM machines for 8.3 days, recording 71 TB of HDFS I/O.

The traces record the I/O of four HBase activities that use HDFS: log-
ging, flushing, reading, and compacting. When HBase receives a put 
request, it immediately logs the record to an HDFS file for persistence. 
The record is also added to an HBase write buffer, which, once filled, 
HBase flushes to a sorted data file. Data files are never modified, so 
when a get request arrives, HBase reads multiple data files in order to 
find the latest version of the data. To limit the number of files that must 
be read, HBase occasionally compacts old files, which involves merge 
sorting multiple small data files into one large file and then deleting 
the small files.

We do two things with our traces of these activities. First, as Figure 1 
shows, we feed them to a pipeline of MapReduce analysis jobs. These 
jobs compute statistics that characterize the workload. We discuss Figure 1: Tracing, analysis, and simulation
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these characteristics in the next section and suggest ways to improve both the hardware 
and software layers of the stack. Second, we evaluate our suggestions via a simulation 
of layered storage. We feed our traces to a model of HBase and HDFS that translates the 
HDFS traces into inferred traces of requests to local file systems. For example, our simu-
lator translates an HDFS write to three local file-system writes based on a model of triple 
replication. We then feed our inferred traces of local file-system I/O to a model of local 
storage. This model computes request latencies and other statistics based on submodels 
of RAM, SSDs, and rotational disks (each with its own block scheduler). We use these 
models to evaluate different ways to build the software and hardware layers of the stack.

Workload Behavior
In this section, we characterize the FM workload with four questions: What activities 
cause I/O at each layer of the stack? How large is the dataset? How large are HDFS files? 
And, is I/O sequential?

I/O Activities
We begin by considering the number of reads and writes at each layer of the stack in 
Figure 2. The first bar shows HDFS reads and writes, excluding logging and compac-
tion overheads. At this level, writes represent only 1% of the 47 TB of I/O. The second 
bar includes these overheads. As shown, overheads are significant and write dominated, 
bringing the writes to 21%.

HBase tolerates failures by replicating data with HDFS. Thus, one HDFS write causes 
three writes to local files and two network transfers. The third bar of Figure 2 shows that 
this tripling increases the writes to 45%. Not all this file-system I/O will hit disk, as OS 
caching absorbs some of the reads. The fourth bar shows that only 35 TB of disk reads 
are caused by the 56 TB of file-system reads. The bar also shows a write increase, as very 
small file-system writes cause 4 KB-block disk writes. Because of these factors, writes 
represent 64% of disk I/O.

Dataset Size
Figure 3 gives a layered overview similar to that of Figure 2, but for data rather than I/O. 
The first bar shows 3.9 TB of HDFS data received some non-overhead I/O during trac-
ing (data deleted during tracing is not counted). Nearly all this data was read and a small 
portion written. The second bar shows data touched by any I/O (including compaction 
and logging overheads). The third bar shows how much data is touched at the local level 
during tracing. This bar also shows untouched data. Most of the 120 TB of data is very 
cold; only a third is accessed over the eight-day period.
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Figure 2: I/O across layers. Black sections represent reads and gray sec-
tions represent writes. The top two bars indicate HDFS I/O as measured 
directly in the traces. The bottom two bars indicate local I/O at the file-
system and disk layers as inferred via simulation.

Figure 3: Data across layers. This is the same as Figure 2 but for data 
instead of I/O. COMP is compaction.
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File Size
GFS (the inspiration for HDFS) assumed “multi-GB files are the 
common case, and should be handled efficiently” [5]. Previous 
HDFS workload studies also show this; for example, MapRe-
duce inputs were found to be about 23 GB at the 90th percentile 
(Facebook in 2010) [1].

Figure 4 reports a CDF of the sizes of HDFS files created dur-
ing tracing. We observe that created files tend to be small; the 
median file is 750 KB, and 90% are smaller than 6.3 MB. This 
means that the data-to-metadata ratio will be higher for FM 
than for traditional workloads, suggesting that it may make 
sense to distribute metadata instead of handling it all with a 
single NameNode.

Sequentiality
GFS is primarily built for sequential I/O and, therefore, assumes 
“high sustained bandwidth is more important than low latency” 
[5]. All HDFS writes are sequential, because appends are the 
only type of writes supported, so we now measure read sequenti-
ality. Data is read with sequential runs of one or more contiguous 
read requests. Highly sequential patterns consist of large runs, 
whereas random patterns consist mostly of small runs.

Figure 5 shows a distribution of read I/O, distributed by run size. 
We observe that most runs are fairly small. The median run size 
is 130 KB, and 80% of runs are smaller than 250 KB, indicating 
FM reads are very random. These random reads are primarily 
caused by get requests; the small (but significant) portion of 
reads that are sequential are mostly due to compaction reads.

Layering: Pitfalls and Solutions
In this section, we discuss different ways to layer storage sys-
tems and evaluate two techniques for better integrating layers.

Layering Background
Three important layers are the local layer (e.g., disks, local file 
systems, and a DataNode), the replication layer (e.g., HDFS), 

and the database layer (e.g., HBase). FM composes these in a 
mid-replicated pattern (Figure 6a), with the database above 
replication and the local stores below. The merit of this design 
is simplicity. The database can be built with the assumption 
that underlying storage will be available and never lose data. 
Unfortunately, this approach separates computation from data. 
Computation (e.g., compaction) can co-reside with, at most, one 
replica, so all writes involve network I/O.

Top-replication (Figure 6b) is an alternative used by Salus [9]. 
Salus supports the HBase API but provides additional robust-
ness and performance advantages. Salus protects against 
memory corruption by replicating database computation as well 
as the data itself. Doing replication above the database level also 
reduces network I/O. If the database wants to reorganize data 
on disk (e.g., via compaction), each database replica can do so on 
its local copy. Unfortunately, top-replicated storage is complex, 
because the database layer must handle underlying failures as 
well as cooperate with other databases.

Mid-bypass (Figure 6c) is a third option proposed by Zaharia et 
al. [10]. This approach (like mid-replication) places the repli-
cation layer between the database and the local store; but, to  
improve performance, an RDD (Resilient Distributed Dataset) 
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Figure 4: File-size CDF. The distribution is over the sizes of created files 
with 50th and 90th percentiles marked.

Figure 5: Run-size CDF. The distribution is over sequential read runs, with 
50th and 80th percentiles marked.

Figure 6: Layered architectures. The HBase architecture (mid-replicated) 
is shown, as well as two alternatives. Top-replication reduces network I/O 
by co-locating database computation with database data. The mid-bypass 
architecture is similar to mid-replication but provides a mechanism for 
bypassing the replication layer for efficiency.
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API lets the database bypass the replication layer. Network I/O 
is avoided by shipping computation directly to the data. HBase 
compaction, if built upon two RDD transformations, join and 
sort, could avoid much network I/O.

Local Compaction
We simulate the mid-bypass approach, shipping compaction 
operations directly to all the replicas of compaction inputs. 
Figure 7 shows how local compaction differs from traditional 
compaction; network I/O is traded for local I/O, to be served by 
local caches or disks.

Figure 8 shows the result: a 62% reduction in network reads, 
from 3.5 TB to 1.3 TB. The figure also shows disk reads, with and 
without local compaction, and with either write allocate (wa) or 
no-write allocate (nwa) caching policies. We observe that disk 
I/O increases slightly more than network I/O decreases. For 
example, with a 100-GB cache, network I/O is decreased by 2.2 
GB, but disk reads are increased by 2.6 GB for no-write allocate. 
This is unsurprising: HBase uses secondary replicas for fault 
tolerance rather than for reads, so secondary replicas are writ-
ten once (by a flush or compaction) and read at most once (by 
compaction). Thus, local-compaction reads tend to (1) be misses 
and (2) pollute the cache with data that will not be read again. 
Even still, trading network I/O for disk I/O in this way is desir-
able, as network infrastructure is generally much more expen-
sive than disks.

Combined Logging
We now consider the interaction between replication and HBase 
logging. Currently, a typical HDFS DataNode receives logs from 
three RegionServers. Because HDFS just views these logs as 
regular HDFS files, HDFS will generally write them to different 
disks. We evaluate an alternative to this design: combined log-
ging. With this approach, HBase passes a hint to HDFS, identify-
ing the logs as files that are unlikely to be read back. Given this 
hint, HDFS can choose a write-optimized layout for the logs. 
In particular, HDFS can interleave the multiple logs in a single 
write-stream on a single dedicated disk.

We simulate combined logging and measure performance for 
requests that go to disk; we consider latencies for logging, com-
paction, and foreground reads. Figure 9 reports the results for 
varying numbers of disks. The latency of log writes decreases 
dramatically with combined logging (e.g., by 6x with 15 disks). 
Foreground-read and compaction requests are also slightly 
faster in most cases due to less competition with logs for seeks. 
Currently, put requests do not block on log writes, so logging 
is a background activity. If, however, HBase were to give a 
stronger guarantee for puts (namely that data is durable before 
returning), combined logging would make that guarantee much 
cheaper.
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Figure 7: Local-compaction architecture. The HBase architecture (left) 
shows how compaction currently creates a data flow with significant net-
work I/O, represented by the two lines crossing machine boundaries. An 
alternative (right) shows how local reads could replace network I/O.

Figure 8: Local-compaction results. The thick gray lines represent HBase 
with local compaction, and the thin black lines represent HBase currently. 
The solid lines represent network reads, and the dashed lines represent 
disk reads; long-dash represents the no-write allocate cache policy and 
short-dash represents write allocate.

Figure 9: Combined logging results. Disk latencies for various activities 
are shown, with (gray) and without (black) combined logging.
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Hardware: Adding a Flash Layer
Earlier, we saw FM has a very large, mostly cold dataset; keep-
ing all this data in flash would be wasteful, costing upwards of 
$10k/machine (assuming flash costs $0.80/GB). Thus, because 
we should not just use flash, we now ask, should we use no flash 
or some flash? To answer this, we need to compare the perfor-
mance improvements provided by flash to the corresponding 
monetary costs.

We first estimate the cost of various hardware combinations 
(assuming disks are $100 each, RAM costs $5/GB, and flash 
costs $0.8/GB). To compute performance, we run our simulator 
on our traces using each hardware combination. We try nine 
RAM/disk combinations, each with no flash or a 60 GB SSD; 
these represent three amounts of disk and three amounts of 
RAM. When the 60 GB SSD is used, the RAM and flash function 
as a tiered LRU cache.

Figure 10 shows how adding flash changes both cost and perfor-
mance. For example, the leftmost two bars of the leftmost plot 
show that adding a 60 GB SSD to a machine with 10 disks and 10 
GB of RAM decreases latency by a factor of 3.5x (from 19.8 ms to 
5.7 ms latency) while only increasing costs by 5%. Across all nine 
groups of bars, we observe that adding the SSD always increases 
costs by 2–5% while decreasing latencies by 17–71%. In two 
thirds of the cases, flash cuts latency by more than 40%.

We have shown that adding a small flash cache greatly improves 
performance for a marginal initial cost. Now, we consider 
long-term replacement caused by flash wear, as commercial 
SSDs often support only 10k program/erase cycles. We consider 
three factors that affect flash wear. First, if there is more RAM, 
there will be fewer evictions to the flash level of the cache and 
therefore fewer writes and less wear. Second, if the flash device 
is large, writes will be spread over more cells, so each cell will 
live longer. Third, using a strict LRU policy can cause excessive 
writes for some workloads by frequently promoting and evicting 
the same items back and forth between RAM and flash.

Figure 11 show how these three factors affect flash lifetime. The 
black “Strict LRU” lines correspond to the same configuration 
used in Figure 10 for the 10 GB and 30 GB RAM results. The 
amount of RAM makes a significant difference. For example, 
for strict LRU, the SSD will live 58% longer with 30 GB of RAM 
instead of 10 GB of RAM. The figure also shows results for a 
wear-friendly policy with the gray lines. In this case, RAM 
and flash are each an LRU independently, and RAM evictions 
are inserted into flash, but (unlike strict LRU) flash hits are 
not repromoted to RAM. This alternative to strict LRU greatly 
reduces wear by reducing movement between RAM and flash. 
For example, with 30 GB of RAM, we observe that 240 GB SSD 
will last 2.7x longer if the wear-friendly policy is used. Finally, 
the figure shows that the amount of flash is a major factor in 

flash lifetime. Whereas the 20 GB SSD lasts between 0.8 and 
1.6 years (depending on policy and amount of RAM), the 120 GB 
SSD always lasts at least five years.

We conclude that adding a small SSD cache is a cost-effective 
way to improve performance. Adding a 60 GB SSD can often 
double performance for only a 5% cost increase. We find that for 
large SSDs, flash has a significant lifetime, and so avoiding wear 
is probably unnecessary (e.g., 120 GB SSDs last more than five 
years with a wear-heavy policy), but for smaller SSDs, it is useful 
to choose caching policies that avoid frequent data shuffling.

Conclusions
We have presented a detailed multilayer study of storage I/O for 
Facebook Messages. Our research relates to common storage 
ideas in several ways. First, the GFS-style architecture is based 
on workload assumptions, such as “high sustained bandwidth 
is more important than low latency” and “multi-GB files are the 

Figure 10: Flash cost and performance. Black bars indicate latency without 
flash, and gray bars indicate latency with a 60 GB SSD. Latencies are only 
counted for foreground I/O (e.g., servicing a get), not background activi-
ties (e.g., compaction). Bar labels indicate cost. For the black bars, the 
labels indicate absolute cost, and for the gray bars, the labels indicate the 
cost increase relative to the black bar.

Figure 11: Flash lifetime. The relationship between flash size and flash 
lifetime is shown for both the keep policy (gray lines) and promote policy 
(black lines). There are two lines for each policy (10 or 30 GB RAM).
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common case, and should be handled efficiently” [5]. We find FM 
represents the opposite workload, being dominated by small files 
and random I/O.

Second, layering storage systems is very popular; Dijkstra found 
layering “proved to be vital for the verification and logical sound-
ness” of an OS [3]. We find, however, that simple layering has a 
cost. In particular, we show that relative to the simple layering 
currently used, tightly integrating layers reduces replication-
related network I/O by 62% and makes log writes 6x faster. We 
further find that layers often amplify writes multiplicatively. For 
example, a 10x logging overhead (HBase level) combines with 
a 3x replication overhead (HDFS level), producing a 30x write 
overhead.

Third, flash is often extolled as a disk replacement. For example, 
Jim Gray has famously said that “tape is dead, disk is tape, flash 
is disk.” For Messages, however, flash is a poor replacement for 
disk, as the dataset is very large and mostly cold, and storing it 
all in flash would cost over $10k/machine. Although we conclude 
that most data should continue to be stored on disk, we find 
small SSDs can be quite useful for storing a small, hot subset 
of the data. Adding a 60 GB SSD can often double performance 
while only increasing costs by 5%.
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In this work, we take a unique view of Facebook Messages, not as 
a single system but as a complex composition of layered subsys-
tems. We believe this perspective is key to deeply understanding 
modern storage systems. Such understanding, we hope, will help 
us better integrate layers, thereby maintaining simplicity while 
achieving new levels of performance.
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