
10    J U N E 20 14  VO L . 3 9, N O. 3 	 www.usenix.org

FILE SYSTEMS AND STORAGE

Analysis of HDFS under HBase
A Facebook Messages Case Study

T Y L E R H A R T E R , D H R U B A B O R T H A K U R , S I Y I N G D O N G , A M I T A N A N D A I Y E R ,
L I Y I N T A N G , A N D R E A C . A R P A C I - D U S S E A U , A N D R E M Z I H . A R P A C I - D U S S E A U

Large-scale distributed storage systems are exceedingly complex
and time-consuming to design, implement, and operate. As a result,
rather than cutting new systems from whole cloth, engineers often

opt for layered architectures, building new systems upon already-existing
ones to ease the burden of development and deployment. In this article, we
examine how layering causes write amplication when HBase is run on top
of HDFS and how tighter integration could result in improved write perfor-
mance. Finally, we take a look at whether it makes sense to include an SSD to
improve performance while keeping costs in check.

Layering, as is well known, has many advantages [6]. For example, construction of the
Frangipani distributed file system was greatly simplified by implementing it atop Petal, a
distributed and replicated block-level storage system [7]. Because Petal provides scalable,
fault-tolerant virtual disks, Frangipani could focus solely on file-system-level issues (e.g.,
locking); the result of this two-layer structure, according to the authors, was that Frangipani
was “relatively easy to build.”

Unfortunately, layering can also lead to problems, usually in the form of decreased perfor-
mance, lowered reliability, or other related issues. For example, Denehy et al. show how naïve
layering of journaling file systems atop software RAIDs can lead to data loss or corruption
[2]. Similarly, others have argued about the general inefficiency of the file system atop block
devices [4].

In this article, we focus on one specific, and increasingly common, layered storage architec-
ture: a distributed database (HBase, derived from Google’s BigTable) atop a distributed file
system (HDFS, derived from the Google File System). Our goal is to study the interaction
of these important systems with a particular focus on the lower layer, which leads to our
highest-level question: Is HDFS an effective storage back end for HBase?

To derive insight into this hierarchical system, and therefore answer this question, we trace
and analyze it under a popular workload: Facebook Messages (FM). FM is a messaging
system that enables Facebook users to send chat and email-like messages to one another; it
is quite popular, handling millions of messages each day. FM stores its information within
HBase (and thus, HDFS) and hence serves as an excellent case study.

To perform our analysis, we collected detailed HDFS traces over an eight-day period on a
subset of FM machines. These traces reveal a workload very unlike traditional GFS/HDFS
patterns. Whereas workloads have traditionally consisted of large, sequential I/O to very
large files, we find that the FM workload represents the opposite. Files are small (750 KB
median), and I/O is highly random (50% of read runs are shorter than 130 KB).

We also use our traces to drive a multilayer simulator, allowing us to analyze I/O patterns
across multiple layers beneath HDFS. From this analysis, we derive numerous insights. For

Tyler Harter is a student at
the University of Wisconsin—
Madison, where he has received
his bachelor’s and master’s
degrees and is currently

pursuing a computer science Ph.D. Professors
Andrea Arpaci-Dusseau and Remzi Arpaci-
Dusseau advise him, and he is funded by an
NSF Fellowship. Tyler is interested in helping
academics understand the I/O workloads seen
in industry; toward this end he has interned
at Facebook twice and studied the Messages
application as a Facebook Fellow. Tyler has also
studied desktop I/O, co-authoring an SOSP ’11
paper, “A File Is Not a File…,” which received a
Best Paper award. harter@cs.wisc.edu

Dhruba Borthakur is an engineer
in the Database Engineering
Team at Facebook. He is leading
the design of RocksDB, a
datastore optimized for storing

data in fast storage. He is one of the founding
architects of the Hadoop Distributed File
System and has been instrumental in scaling
Facebook’s Hadoop cluster to multiples of
petabytes. Dhruba also is a contributor to the
Apache HBase project and Andrew File System
(AFS). Dhruba has an MS in computer science
from the University of Wisconsin-Madison. He
hosts a Hadoop blog at http://hadoopblog
.blogspot.com/ and a RocksDB blog at http://
rocksdb.blogspot.com. dhruba@fb.com

www.usenix.org	   J U N E 20 14  VO L . 3 9, N O. 3  11

FILE SYSTEMS AND STORAGE
Analysis of HDFS under HBase: A Facebook Messages Case Study

Siying Dong is a software
engineer working in the
Database Engineering team
at Facebook, focusing on
RocksDB. He also worked on

Hive, HDFS, and some other data warehouse
infrastructures. Before joining Facebook, Siying
worked in the SQL Azure Team at Microsoft.
He received a bachelor’s degree from Tsinghua
University and a master’s degree from
Brandeis University. siying.d@fb.com

Amitanand Aiyer is a research
scientist in the Core Data
team at Facebook. He focuses
on building fault-tolerant
distributed systems and

has been working on HBase to improve its
availability and fault tolerance. Amitanand is
an HBase Committer and has a Ph.D. from the
University of Texas at Austin. 
amitanand.s@fb.com

Liyin Tang is a software
engineer from the Core Data
team at Facebook, where he
focuses on building highly
available and reliable storage

services, and helps the service scale in the
face of exponential data growth. Liyin also
works as an HBase PMC member in the
Apache community. He has a master’s degree
in computer science from the University of
Southern California and a bachelor’s degree in
software engineering from Shanghai Jiao Tong
University. liyin.tang@fb.com

example, we find that many features at different layers amplify writes, and that these features
often combine multiplicatively. For example, HBase logs introduced a 10x overhead on writes,
whereas HDFS replication introduced a 3x overhead; together, these features produced a 30x
write overhead. When other features such as compaction and caching are also considered,
we find writes are further amplified across layers. At the highest level, writes account for a
mere 1% of the baseline HDFS I/O, but by the time the I/O reaches disk, writes account for
64% of the workload.

This finding indicates that even though FM is an especially read-heavy workload within
Facebook, it is important to optimize for both reads and writes. We evaluate potential
optimizations by modeling various hardware and software changes with our simulator.
For reads, we observe that requests are highly random; therefore, we evaluate using flash
to cache popular data. We find that adding a small SSD (e.g., 60 GB) can reduce latency by
3.5x. For writes, we observe compaction and logging are the major causes (61% and 36%,
respectively); therefore, we evaluate HDFS changes that give HBase special support for these
operations. We find such HDFS specialization yields a 2.7x reduction in replication-related
network I/O and a 6x speedup for log writes. More results and analysis are discussed in our
FAST ’14 paper [8].

Background and Methodology
The FM storage stack is based on three layers: distributed database over distributed file
system over local storage. These three layers are illustrated in Figure 1 under “Actual Stack.”
As shown, FM uses HBase for the distributed database and HDFS for the distributed file
system. HBase provides a simple API allowing FM to put and get key-value pairs. HBase
stores these records in data files in HDFS. HDFS replicates the data across three machines
and thus can handle disk and machine failures. By handling these low-level fault toler-
ance details, HDFS frees HBase to focus on higher-level database logic. HDFS in turn stores
replicas of HDFS blocks as files in local file systems. This design enables HDFS to focus on
replication while leaving details such as disk layout to local file systems. The primary advan-
tage of this layered design is that each layer has only a few responsibilities, so each layer is
simpler (and less bug prone) than a hypothetical single system that would be responsible for
everything.

One important question about this layered design, however, is: What is the cost of simplicity
(if any) in terms of performance? We explore this question in the context of the FM work-
load. To understand how FM uses the HBase/HDFS stack, we trace requests from HBase to
HDFS, as shown in the Figure 1. We collect traces by deploying a new HDFS tracing frame-
work that we built to nine FM machines for 8.3 days, recording 71 TB of HDFS I/O.

The traces record the I/O of four HBase activities that use HDFS: log-
ging, flushing, reading, and compacting. When HBase receives a put
request, it immediately logs the record to an HDFS file for persistence.
The record is also added to an HBase write buffer, which, once filled,
HBase flushes to a sorted data file. Data files are never modified, so
when a get request arrives, HBase reads multiple data files in order to
find the latest version of the data. To limit the number of files that must
be read, HBase occasionally compacts old files, which involves merge
sorting multiple small data files into one large file and then deleting
the small files.

We do two things with our traces of these activities. First, as Figure 1
shows, we feed them to a pipeline of MapReduce analysis jobs. These
jobs compute statistics that characterize the workload. We discuss Figure 1: Tracing, analysis, and simulation

12    J U N E 20 14  VO L . 3 9, N O. 3 	 www.usenix.org

FILE SYSTEMS AND STORAGE
Analysis of HDFS under HBase: A Facebook Messages Case Study

these characteristics in the next section and suggest ways to improve both the hardware
and software layers of the stack. Second, we evaluate our suggestions via a simulation
of layered storage. We feed our traces to a model of HBase and HDFS that translates the
HDFS traces into inferred traces of requests to local file systems. For example, our simu-
lator translates an HDFS write to three local file-system writes based on a model of triple
replication. We then feed our inferred traces of local file-system I/O to a model of local
storage. This model computes request latencies and other statistics based on submodels
of RAM, SSDs, and rotational disks (each with its own block scheduler). We use these
models to evaluate different ways to build the software and hardware layers of the stack.

Workload Behavior
In this section, we characterize the FM workload with four questions: What activities
cause I/O at each layer of the stack? How large is the dataset? How large are HDFS files?
And, is I/O sequential?

I/O Activities
We begin by considering the number of reads and writes at each layer of the stack in
Figure 2. The first bar shows HDFS reads and writes, excluding logging and compac-
tion overheads. At this level, writes represent only 1% of the 47 TB of I/O. The second
bar includes these overheads. As shown, overheads are significant and write dominated,
bringing the writes to 21%.

HBase tolerates failures by replicating data with HDFS. Thus, one HDFS write causes
three writes to local files and two network transfers. The third bar of Figure 2 shows that
this tripling increases the writes to 45%. Not all this file-system I/O will hit disk, as OS
caching absorbs some of the reads. The fourth bar shows that only 35 TB of disk reads
are caused by the 56 TB of file-system reads. The bar also shows a write increase, as very
small file-system writes cause 4 KB-block disk writes. Because of these factors, writes
represent 64% of disk I/O.

Dataset Size
Figure 3 gives a layered overview similar to that of Figure 2, but for data rather than I/O.
The first bar shows 3.9 TB of HDFS data received some non-overhead I/O during trac-
ing (data deleted during tracing is not counted). Nearly all this data was read and a small
portion written. The second bar shows data touched by any I/O (including compaction
and logging overheads). The third bar shows how much data is touched at the local level
during tracing. This bar also shows untouched data. Most of the 120 TB of data is very
cold; only a third is accessed over the eight-day period.

Remzi Arpaci-Dusseau is a full
professor in the Computer Sciences
Department at the University of
Wisconsin—Madison. Remzi co-
leads a research group with his wife,

Andrea; details of their research can be found at
http://research.cs.wisc.edu/adsl. Remzi has won
the SACM Professor-of-the-Year award four times
and the Rosner “Excellent Educator” award once.
Chapters from a freely available OS book he and
his wife co-wrote, found at www.ostep.org, have
been downloaded over 1/2 million times. Remzi
has served as co-chair of USENIX ATC, FAST,
OSDI, and (upcoming) SOCC conferences. Remzi
has been a NetApp faculty fellow, an IBM faculty
award winner, an NSF CAREER award winner,
and currently serves on the Samsung DS CTO
and UW Office of Industrial Partnership advisory
boards. remzi@cs.wisc.edu

Andrea Arpaci-Dusseau is a
professor and associate chair of
computer sciences at the University
of Wisconsin—Madison. Andrea
co-leads a research group with

her husband, Remzi, and has advised 14 students
through their Ph.D. dissertations; their group has
received many Best Paper awards and sorting
world records. She is a UW—Madison Vilas
Associate and received the Carolyn Rosner
“Excellent Educator’’ award; she has served
on the NSF CISE Advisory Committee and as
faculty co-director of the Women in Science
and Engineering (WISE) Residential Learning
Community. dusseau@cs.wisc.edu

Figure 2: I/O across layers. Black sections represent reads and gray sec-
tions represent writes. The top two bars indicate HDFS I/O as measured
directly in the traces. The bottom two bars indicate local I/O at the file-
system and disk layers as inferred via simulation.

Figure 3: Data across layers. This is the same as Figure 2 but for data
instead of I/O. COMP is compaction.

www.usenix.org	   J U N E 20 14  VO L . 3 9, N O. 3  13

File Size
GFS (the inspiration for HDFS) assumed “multi-GB files are the
common case, and should be handled efficiently” [5]. Previous
HDFS workload studies also show this; for example, MapRe-
duce inputs were found to be about 23 GB at the 90th percentile
(Facebook in 2010) [1].

Figure 4 reports a CDF of the sizes of HDFS files created dur-
ing tracing. We observe that created files tend to be small; the
median file is 750 KB, and 90% are smaller than 6.3 MB. This
means that the data-to-metadata ratio will be higher for FM
than for traditional workloads, suggesting that it may make
sense to distribute metadata instead of handling it all with a
single NameNode.

Sequentiality
GFS is primarily built for sequential I/O and, therefore, assumes
“high sustained bandwidth is more important than low latency”
[5]. All HDFS writes are sequential, because appends are the
only type of writes supported, so we now measure read sequenti-
ality. Data is read with sequential runs of one or more contiguous
read requests. Highly sequential patterns consist of large runs,
whereas random patterns consist mostly of small runs.

Figure 5 shows a distribution of read I/O, distributed by run size.
We observe that most runs are fairly small. The median run size
is 130 KB, and 80% of runs are smaller than 250 KB, indicating
FM reads are very random. These random reads are primarily
caused by get requests; the small (but significant) portion of
reads that are sequential are mostly due to compaction reads.

Layering: Pitfalls and Solutions
In this section, we discuss different ways to layer storage sys-
tems and evaluate two techniques for better integrating layers.

Layering Background
Three important layers are the local layer (e.g., disks, local file
systems, and a DataNode), the replication layer (e.g., HDFS),

and the database layer (e.g., HBase). FM composes these in a
mid-replicated pattern (Figure 6a), with the database above
replication and the local stores below. The merit of this design
is simplicity. The database can be built with the assumption
that underlying storage will be available and never lose data.
Unfortunately, this approach separates computation from data.
Computation (e.g., compaction) can co-reside with, at most, one
replica, so all writes involve network I/O.

Top-replication (Figure 6b) is an alternative used by Salus [9].
Salus supports the HBase API but provides additional robust-
ness and performance advantages. Salus protects against
memory corruption by replicating database computation as well
as the data itself. Doing replication above the database level also
reduces network I/O. If the database wants to reorganize data
on disk (e.g., via compaction), each database replica can do so on
its local copy. Unfortunately, top-replicated storage is complex,
because the database layer must handle underlying failures as
well as cooperate with other databases.

Mid-bypass (Figure 6c) is a third option proposed by Zaharia et
al. [10]. This approach (like mid-replication) places the repli-
cation layer between the database and the local store; but, to
improve performance, an RDD (Resilient Distributed Dataset)

FILE SYSTEMS AND STORAGE
Analysis of HDFS under HBase: A Facebook Messages Case Study

Figure 4: File-size CDF. The distribution is over the sizes of created files
with 50th and 90th percentiles marked.

Figure 5: Run-size CDF. The distribution is over sequential read runs, with
50th and 80th percentiles marked.

Figure 6: Layered architectures. The HBase architecture (mid-replicated)
is shown, as well as two alternatives. Top-replication reduces network I/O
by co-locating database computation with database data. The mid-bypass
architecture is similar to mid-replication but provides a mechanism for
bypassing the replication layer for efficiency.

14    J U N E 20 14  VO L . 3 9, N O. 3 	 www.usenix.org

API lets the database bypass the replication layer. Network I/O
is avoided by shipping computation directly to the data. HBase
compaction, if built upon two RDD transformations, join and
sort, could avoid much network I/O.

Local Compaction
We simulate the mid-bypass approach, shipping compaction
operations directly to all the replicas of compaction inputs.
Figure 7 shows how local compaction differs from traditional
compaction; network I/O is traded for local I/O, to be served by
local caches or disks.

Figure 8 shows the result: a 62% reduction in network reads,
from 3.5 TB to 1.3 TB. The figure also shows disk reads, with and
without local compaction, and with either write allocate (wa) or
no-write allocate (nwa) caching policies. We observe that disk
I/O increases slightly more than network I/O decreases. For
example, with a 100-GB cache, network I/O is decreased by 2.2
GB, but disk reads are increased by 2.6 GB for no-write allocate.
This is unsurprising: HBase uses secondary replicas for fault
tolerance rather than for reads, so secondary replicas are writ-
ten once (by a flush or compaction) and read at most once (by
compaction). Thus, local-compaction reads tend to (1) be misses
and (2) pollute the cache with data that will not be read again.
Even still, trading network I/O for disk I/O in this way is desir-
able, as network infrastructure is generally much more expen-
sive than disks.

Combined Logging
We now consider the interaction between replication and HBase
logging. Currently, a typical HDFS DataNode receives logs from
three RegionServers. Because HDFS just views these logs as
regular HDFS files, HDFS will generally write them to different
disks. We evaluate an alternative to this design: combined log-
ging. With this approach, HBase passes a hint to HDFS, identify-
ing the logs as files that are unlikely to be read back. Given this
hint, HDFS can choose a write-optimized layout for the logs.
In particular, HDFS can interleave the multiple logs in a single
write-stream on a single dedicated disk.

We simulate combined logging and measure performance for
requests that go to disk; we consider latencies for logging, com-
paction, and foreground reads. Figure 9 reports the results for
varying numbers of disks. The latency of log writes decreases
dramatically with combined logging (e.g., by 6x with 15 disks).
Foreground-read and compaction requests are also slightly
faster in most cases due to less competition with logs for seeks.
Currently, put requests do not block on log writes, so logging
is a background activity. If, however, HBase were to give a
stronger guarantee for puts (namely that data is durable before
returning), combined logging would make that guarantee much
cheaper.

FILE SYSTEMS AND STORAGE
Analysis of HDFS under HBase: A Facebook Messages Case Study

Figure 7: Local-compaction architecture. The HBase architecture (left)
shows how compaction currently creates a data flow with significant net-
work I/O, represented by the two lines crossing machine boundaries. An
alternative (right) shows how local reads could replace network I/O.

Figure 8: Local-compaction results. The thick gray lines represent HBase
with local compaction, and the thin black lines represent HBase currently.
The solid lines represent network reads, and the dashed lines represent
disk reads; long-dash represents the no-write allocate cache policy and
short-dash represents write allocate.

Figure 9: Combined logging results. Disk latencies for various activities
are shown, with (gray) and without (black) combined logging.

www.usenix.org	   J U N E 20 14  VO L . 3 9, N O. 3  15

FILE SYSTEMS AND STORAGE
Analysis of HDFS under HBase: A Facebook Messages Case Study

Hardware: Adding a Flash Layer
Earlier, we saw FM has a very large, mostly cold dataset; keep-
ing all this data in flash would be wasteful, costing upwards of
$10k/machine (assuming flash costs $0.80/GB). Thus, because
we should not just use flash, we now ask, should we use no flash
or some flash? To answer this, we need to compare the perfor-
mance improvements provided by flash to the corresponding
monetary costs.

We first estimate the cost of various hardware combinations
(assuming disks are $100 each, RAM costs $5/GB, and flash
costs $0.8/GB). To compute performance, we run our simulator
on our traces using each hardware combination. We try nine
RAM/disk combinations, each with no flash or a 60 GB SSD;
these represent three amounts of disk and three amounts of
RAM. When the 60 GB SSD is used, the RAM and flash function
as a tiered LRU cache.

Figure 10 shows how adding flash changes both cost and perfor-
mance. For example, the leftmost two bars of the leftmost plot
show that adding a 60 GB SSD to a machine with 10 disks and 10
GB of RAM decreases latency by a factor of 3.5x (from 19.8 ms to
5.7 ms latency) while only increasing costs by 5%. Across all nine
groups of bars, we observe that adding the SSD always increases
costs by 2–5% while decreasing latencies by 17–71%. In two
thirds of the cases, flash cuts latency by more than 40%.

We have shown that adding a small flash cache greatly improves
performance for a marginal initial cost. Now, we consider
long-term replacement caused by flash wear, as commercial
SSDs often support only 10k program/erase cycles. We consider
three factors that affect flash wear. First, if there is more RAM,
there will be fewer evictions to the flash level of the cache and
therefore fewer writes and less wear. Second, if the flash device
is large, writes will be spread over more cells, so each cell will
live longer. Third, using a strict LRU policy can cause excessive
writes for some workloads by frequently promoting and evicting
the same items back and forth between RAM and flash.

Figure 11 show how these three factors affect flash lifetime. The
black “Strict LRU” lines correspond to the same configuration
used in Figure 10 for the 10 GB and 30 GB RAM results. The
amount of RAM makes a significant difference. For example,
for strict LRU, the SSD will live 58% longer with 30 GB of RAM
instead of 10 GB of RAM. The figure also shows results for a
wear-friendly policy with the gray lines. In this case, RAM
and flash are each an LRU independently, and RAM evictions
are inserted into flash, but (unlike strict LRU) flash hits are
not repromoted to RAM. This alternative to strict LRU greatly
reduces wear by reducing movement between RAM and flash.
For example, with 30 GB of RAM, we observe that 240 GB SSD
will last 2.7x longer if the wear-friendly policy is used. Finally,
the figure shows that the amount of flash is a major factor in

flash lifetime. Whereas the 20 GB SSD lasts between 0.8 and
1.6 years (depending on policy and amount of RAM), the 120 GB
SSD always lasts at least five years.

We conclude that adding a small SSD cache is a cost-effective
way to improve performance. Adding a 60 GB SSD can often
double performance for only a 5% cost increase. We find that for
large SSDs, flash has a significant lifetime, and so avoiding wear
is probably unnecessary (e.g., 120 GB SSDs last more than five
years with a wear-heavy policy), but for smaller SSDs, it is useful
to choose caching policies that avoid frequent data shuffling.

Conclusions
We have presented a detailed multilayer study of storage I/O for
Facebook Messages. Our research relates to common storage
ideas in several ways. First, the GFS-style architecture is based
on workload assumptions, such as “high sustained bandwidth
is more important than low latency” and “multi-GB files are the

Figure 10: Flash cost and performance. Black bars indicate latency without
flash, and gray bars indicate latency with a 60 GB SSD. Latencies are only
counted for foreground I/O (e.g., servicing a get), not background activi-
ties (e.g., compaction). Bar labels indicate cost. For the black bars, the
labels indicate absolute cost, and for the gray bars, the labels indicate the
cost increase relative to the black bar.

Figure 11: Flash lifetime. The relationship between flash size and flash
lifetime is shown for both the keep policy (gray lines) and promote policy
(black lines). There are two lines for each policy (10 or 30 GB RAM).

16    J U N E 20 14  VO L . 3 9, N O. 3 	 www.usenix.org

common case, and should be handled efficiently” [5]. We find FM
represents the opposite workload, being dominated by small files
and random I/O.

Second, layering storage systems is very popular; Dijkstra found
layering “proved to be vital for the verification and logical sound-
ness” of an OS [3]. We find, however, that simple layering has a
cost. In particular, we show that relative to the simple layering
currently used, tightly integrating layers reduces replication-
related network I/O by 62% and makes log writes 6x faster. We
further find that layers often amplify writes multiplicatively. For
example, a 10x logging overhead (HBase level) combines with
a 3x replication overhead (HDFS level), producing a 30x write
overhead.

Third, flash is often extolled as a disk replacement. For example,
Jim Gray has famously said that “tape is dead, disk is tape, flash
is disk.” For Messages, however, flash is a poor replacement for
disk, as the dataset is very large and mostly cold, and storing it
all in flash would cost over $10k/machine. Although we conclude
that most data should continue to be stored on disk, we find
small SSDs can be quite useful for storing a small, hot subset
of the data. Adding a 60 GB SSD can often double performance
while only increasing costs by 5%.

FILE SYSTEMS AND STORAGE
Analysis of HDFS under HBase: A Facebook Messages Case Study

In this work, we take a unique view of Facebook Messages, not as
a single system but as a complex composition of layered subsys-
tems. We believe this perspective is key to deeply understanding
modern storage systems. Such understanding, we hope, will help
us better integrate layers, thereby maintaining simplicity while
achieving new levels of performance.

Acknowledgments
We thank the anonymous reviewers and Andrew Warfield
(our FAST shepherd) for their tremendous feedback, as well as
members of our research group for their thoughts and comments
on this work at various stages. We also thank Pritam Damania,
Adela Maznikar, and Rishit Shroff for their help in collecting
HDFS traces.

This material was supported by funding from NSF grants CNS-
1319405 and CNS-1218405 as well as generous donations from
EMC, Facebook, Fusion-io, Google, Huawei, Microsoft, NetApp,
Sony, and VMware. Tyler Harter is supported by the NSF Fel-
lowship and Facebook Fellowship. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of
NSF or other institutions.

References
[1] Yanpei Chen, Sara Alspaugh, and Randy Katz, “Interactive
Analytical Processing in Big Data Systems: A Cross-Industry
Study of MapReduce Workloads,” Proceedings of the VLDB
Endowment, vol. 5, no. 12 (August 2012), pp. 1802–1813.

[2] Timothy E. Denehy, Andrea C. Arpaci-Dusseau, and Remzi
H. Arpaci-Dusseau, “Journal-Guided Resynchronization for
Software RAID,” Proceedings of the 4th USENIX Symposium
on File and Storage Technologies (FAST ’05) (December 2005),
pp. 87–100.

[3] E. W. Dijkstra, “The Structure of the THE Multiprogram-
ming System,” Communications of the ACM, vol. 11, no. 5 (May
1968), pp. 341–346.

[4] Gregory R. Ganger, “Blurring the Line Between OSes and
Storage Devices,” Technical Report CMU-CS-01-166, Carnegie
Mellon University, December 2001.

[5] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung,
“The Google File System,” Proceedings of the 19th ACM Sym-
posium on Operating Systems Principles (SOSP ’03) (October
2003), pp. 29–43.

[6] Jerome H. Saltzer, David P. Reed, and David D. Clark, “End-
to-End Arguments in System Design,” ACM Transactions on
Computer Systems, vol. 2, no. 4 (November 1984), pp. 277–288.

[7] Chandramohan A. Thekkath, Timothy Mann, and Edward
K. Lee, “Frangipani: A Scalable Distributed File System,”
Proceedings of the 16th ACM Symposium on Operating Systems
Principles (SOSP ’97) (October 1997), pp. 224–237.

[8] Tyler Harter, Dhruba Borthakur, Siying Dong, Amita-
nand Aiyer, Liyin Tang, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, “Analysis of HDFS under HBase: A Facebook
Messages Case Study,” Proceedings of the 12th Conference on File
and Storage Technologies (FAST ’14) (February 2014).

[9] Yang Wang, Manos Kapritsos, Zuocheng Ren, Prince Maha-
jan, Jeevitha Kirubanandam, Lorenzo Alvisi, and Mike Dahlin,
“Robustness in the Salus Scalable Block Store,” Proceedings
of the 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’13) (April 2013).

[10] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J.
Franklin, Scott Shenker, and Ion Stoica, “Resilient Distributed
Datasets: A Fault-Tolerant Abstraction for In-memory Cluster
Computing,” Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation (NSDI ’12)
(April 2012).

Publish and Present Your Work at USENIX Conferences
The program committees of the following conferences are seeking submissions. CiteSeer ranks the USENIX
 Conference Proceedings among the the top ten highest-impact publication venues for computer science.

Get more details about each of these Calls for Papers and Participation at www.usenix.org/cfp.

INFLOW ’14: 2nd Workshop on Interactions of NVM/
Flash with Operating Systems and Workloads
October 5, 2014, Broomfield, CO
Submissions due: July 1, 2014, 11:59 p.m. PDT
The goal of INFLOW ’14 is to bring together researchers
and practitioners working in systems, across the hardware/
software stack, who are interested in the cross-cutting
issues of NVM/Flash technologies, operating systems, and
emerging workloads.

HotDep ’14: 10th Workshop on Hot Topics in System
Dependability
October 5, 2014, Broomfield, CO
Submissions due: July 10, 2014
HotDep ’14 will bring forth cutting-edge research ideas
spanning the domains of systems and fault tolerance/
reliability. The workshop will build links between the two
communities and serve as a forum for sharing ideas and
challenges.

FAST ’15: 13th USENIX Conference on File and Storage
Technologies
February 16–19, 2015, Santa Clara, CA
Submissions due: September 23, 2014, 9:00 p.m. PDT
(Hard deadline, no extensions)
The 13th USENIX Conference on File and Storage Tech-
nologies (FAST ’15) brings together storage-system
researchers and practitioners to explore new directions in
the design, implementation, evaluation, and deployment
of storage systems. The program committee will interpret
“storage systems” broadly; everything from low-level stor-
age devices to information management is of interest. The
conference will consist of technical presentations, includ-
ing refereed papers, Work-in-Progress (WiP) reports, poster
sessions, and tutorials.

Publish and Present Your Work at USENIX Conferences
The program committees of the following conferences are seeking submissions. CiteSeer ranks the USENIX
 Conference Proceedings among the the top ten highest-impact publication venues for computer science.

Get more details about each of these Calls for Papers and Participation at www.usenix.org/cfp.

INFLOW ’14: 2nd Workshop on Interactions of NVM/
Flash with Operating Systems and Workloads
October 5, 2014, Broomfield, CO
Submissions due: July 1, 2014, 11:59 p.m. PDT
The goal of INFLOW ’14 is to bring together researchers
and practitioners working in systems, across the hardware/
software stack, who are interested in the cross-cutting
issues of NVM/Flash technologies, operating systems, and
emerging workloads.

HotDep ’14: 10th Workshop on Hot Topics in System
Dependability
October 5, 2014, Broomfield, CO
Submissions due: July 10, 2014
HotDep ’14 will bring forth cutting-edge research ideas
spanning the domains of systems and fault tolerance/
reliability. The workshop will build links between the two
communities and serve as a forum for sharing ideas and
challenges.

FAST ’15: 13th USENIX Conference on File and Storage
Technologies
February 16–19, 2015, Santa Clara, CA
Submissions due: September 23, 2014, 9:00 p.m. PDT
(Hard deadline, no extensions)
The 13th USENIX Conference on File and Storage Tech-
nologies (FAST ’15) brings together storage-system
researchers and practitioners to explore new directions in
the design, implementation, evaluation, and deployment
of storage systems. The program committee will interpret
“storage systems” broadly; everything from low-level stor-
age devices to information management is of interest. The
conference will consist of technical presentations, includ-
ing refereed papers, Work-in-Progress (WiP) reports, poster
sessions, and tutorials.

