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USB devices are easy to take for granted: They’re innocuous by their 
nature (who’s afraid of a keyboard?) and by their ubiquity. However, 
the architecture of the Universal Serial Bus ecosystem is surpris-

ingly complex and deeply embedded in modern operating systems. Further-
more, having risen to awareness on the backs of traditionally “dumb” devices 
like keyboards and mice, the features of the USB protocol that very much 
resemble wide-area networking protocols can be underappreciated. This 
combination of complexity, embeddedness, and underappreciation is the 
unholy trinity of security “features.” In the following paragraphs, I hope to 
sprinkle some holy water on this situation, so come along while I first share 
some fire and brimstone, then give reason for hope. To the Batmobile!

“It can’t be that bad,” you’re saying to yourself, “a USB attack requires physical access.” 
While absolutely true, this misses a crucial technicality: An attack over USB must indeed 
be delivered physically, but the attacker herself need not be physically present. How many 
people, upon finding a USB thumb drive lying on the ground, are able to resist the temptation 
to plug it into the first computer they find? Sufficient anecdotal evidence exists to suggest 
the number is “few enough for us to worry” (though I wish you the best of luck in getting IRB 
approval to verify this experimentally). I don’t mean to imply that the physical nature of USB 
is impotent as a defense, but that it is not dependable.

Speaking of Stuxnet, once the USB drive prepared by [REDACTED] was plugged into a 
machine beyond the defensive air gap, the “vulnerability” it initially exploited was that Win-
dows was configured to execute autorun.inf on any inserted devices. The realization that 
such critical systems were thus (mis)configured no doubt makes the sysadmin- and secu-
rity-minded out there a bit light-headed, and the same people might be tempted to breathe a 
sigh of relief that the initial infection vector could be so easily shut off. Completely setting 
aside the raft of zero-day exploits also employed by Stuxnet, indulging in the aforementioned 
sigh of relief is a bit premature.

How Bad Is It Really?
In March 2013, Microsoft patched three similar vulnerabilities (CVE-2013-1285, CVE-
2013-1286, CVE-2013-1287) in all extant versions of Windows that allowed “escalation of 
privilege” [4]. NIST’s National Vulnerability Database puts it a bit more starkly [7–9]:

◆◆ Access Complexity: Low 

◆◆ Authentication Required: None 

◆◆ Confidentiality Impact: Complete 

◆◆ Integrity Impact: Complete 

◆◆ Availability Impact: Complete 

These were not system configuration issues, like failing to disable execution of autorun.inf;  
these were bugs in the kernel’s USB stack, ring-0 code that is run automatically every 
time a USB device is plugged in to the system. Running such code with such privileges is a 
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somewhat natural consequence of the “U” in USB: To support a 
broad array of devices, the kernel must get the device to identify 
itself so that the kernel can load the appropriate driver. This 
process is called “bus enumeration” (because the host is taking 
roll of devices on the bus) and looks something like this:

Kernel: Stop! What is your name?

Device: It is Arthur, King of the Britons.

Kernel: What is your quest?

Device: To seek the Holy Grail.

Kernel: What is the airspeed of an unladen swallow?

The device’s response at this point is key. If the answer is “I don’t 
know,” the device finds itself tossed from the Bridge of Death, 
never to return; if the answer is “What do you mean? An African 
or European swallow?” the kernel loses its mind and the Bridge 
of Death is no longer guarded. This example is surprisingly illus-
trative and not just the injection of a predictable computer nerd 
trope: A device can respond according to the USB protocol with 
an identification the kernel accepts, it can respond according 
to the protocol with an identification the kernel rejects (“I don’t 
know”), or it can deviate from the protocol entirely (“African or 
European?”).

If you squint only a bit, the bus enumeration process caricatured 
in Figure 1 bears more than a passing resemblance to the three-
step TCP handshake or the request-response nature of an SMTP 
transaction. Figure 1 shows the enumeration process in the form 
of the ladder diagram we all know and love from the networking 
world. Indeed, the USB protocol sports a great number of fea-

tures reminiscent of traditional network protocols: addressing, 
packetized data, sequence numbers, acknowledgments, and so 
on. (I’ll return to this comparison later on, I promise.)

The bugs Microsoft patched in 2013 were failures to correctly 
handle protocol deviations that allowed complete system com-
promise. Unfortunately, precise details on the patched vulner-
abilities are difficult to come by, though we have good reason to 
believe the problems arose when parsing descriptors during enu-
meration. Parsing is one of those oft-underappreciated aspects 
of protocol implementation that should be relatively straight-
forward to get right, yet can lead to rather catastrophic failures. 
In the case of bus enumeration, the complexity of the messages 
involved can’t have helped. Figures 2 and 3 show a couple of 
packets sent during enumeration, specifically the host-to-device 
message that requests a configuration and the device-to-host 
response. (The specific semantics aren’t important, so don’t 
worry if “configurations,” “interfaces,” and “endpoints” mean 
nothing to you.)

The configuration request shown in Figure 2 is fairly simple, 
but the response (Figure 3) is anything but. After the standard 

Figure 1: USB bus enumeration process as a ladder diagram

Figure 2: Bit-level description of message sent during bus enumeration 
from host to device requesting configuration descriptor

Figure 3: Bit-level description of message sent during bus enumeration 
from device to host containing configuration descriptors
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header stuff (the details of which—barring the length fields—are 
secondary for this discussion), the device sends the descriptors 
of all interfaces contained within that particular configura-
tion. Again, what a USB interface is doesn’t really matter right 
now; the important point is that it’s another message format that 
needs to be parsed. Not just that, but interfaces contain end-
points, the descriptors for which are also embedded in this single 
response. The result is a (relative) ton of data with all manner of 
length fields littered throughout, whose correct interpretation is 
vital to the correct interpretation of the message as a whole, and 
which are mutually dependent—that is, if the length field of one 
descriptor is messed up, the rest of the parse necessarily goes off 
the deep end.

This complexity makes implementing both host- and device-side 
logic dealing with descriptors a delicate task, but it gets better!

The Device Is the Application
Let’s now move up the stack a bit and look at the application 
layer. In the world of networking, applications are, practically 
speaking, presented with their choice of either streams (TCP) or 
datagrams (UDP). Beyond that, they’re more or less on their own, 
although standards like SMTP and DNS have been created to 
enforce some consistency (and, hopefully, quality). Proprietary 
protocols, on the other hand, are a completely different story: 
Vendors can and do design and implement protocols however 
they darn well please, which frequently results in the less-good 
kind of media attention. (Diebold, anyone?)

Fortunately for us innocent bystanders, some of the local effects 
of poorly designed or implemented application protocols can be 
mitigated by running server processes as an unprivileged user 
or in a chroot jail. Ideally, then, if a vulnerability in a protocol 
design or implementation is discovered, only resources owned by 
the unprivileged user or those within the chroot jail are suscep-
tible to compromise. Other methods, including virtual machines 
and Linux containers, provide isolation sufficient to protect 
against whole-system compromise, although it isn’t immediately 
clear how any of these map to the USB realm.

The USB protocol allows similar encapsulation (indeed, the USB 
Mass Storage Specification calls for stuffing raw SCSI com-
mands inside USB packets much like iSCSI stuffs them inside 
IP packets). This freedom brings with it the same double-edged 
sword as in the networking world: Although developers can 
define their own protocols to create exciting new applications, 
they also run the risk of introducing vulnerabilities as they 
increase systems’ attack surfaces. But wait! USB doesn’t deal 
with applications, it deals with devices!

The implications of this are numerous and not altogether 
encouraging. First, it means that, once shipped, devices are often 
stuck with a specific version of a protocol implementation—one 

that might be buggy (i.e., vulnerable) and difficult to upgrade. 
Second, the “server” implementation of the protocol frequently 
exists in the device driver—which usually runs as kernel code—so 
if the protocol is vulnerable, an exploit necessarily results in 
total system compromise. Third, although standards such as 
USB Mass Storage and USB Human Interface Device exist to 
bring some sanity to the land, many devices ship binary driv-
ers. That’s right: Devices can ship black-box code, implement-
ing black-box protocols, that implicitly runs inside the kernel’s 
address space.

That’s okay, at least USB doesn’t let the device pick which driver 
to talk to—nothing like inetd for networking services. Hmm? 
What’s that you say? I already described how a device identifies 
itself to the kernel? And there’s nothing to stop a device from 
identifying itself as a device with a known-vulnerable driver? 
And the kernel will happily load said driver and let the device 
talk to it, no questions asked? Well, that’s potentially worrisome.

Unfortunately, it’s true: In addition to the potentially unreliable 
nature of USB device driver protocols and implementations, a 
newly plugged device is in charge of choosing precisely which 
device driver to communicate with. To make matters worse, 
modern operating systems ship with support for a huge number 
of devices, many drivers for which haven’t seen maintenance in 
years. To think there aren’t exploitable vulnerabilities lurking 
among that crufty code would be naïve.

Okay, I’m Scared. Help?
In the preceding paragraphs, I’ve painted a pretty bleak picture. 
The (sort of) good news is that we don’t know of any vulner-
abilities in extant USB stacks. Of course, that doesn’t mean there 
aren’t any, nor does it mean that other people don’t know about 
them or, if they do, that they aren’t actively exploiting them. I 
said at the beginning that I’d give reason for hope, and here’s 
where that comes in. I also said I’d return to the similarities 
between the USB architecture and the networking systems we 
all know and love. Two birds, one stone.

It’s true that USB is an underappreciated attack vector; in con-
trast, networks are not. Because the two are so similar, we can 
take advantage of decades of tools, techniques, research, and lore 
in defending networks and apply it to the task of defending USB.

First and foremost, we know there’s a problem and, as G.I. Joe 
would say, “Knowing is half the battle.” My colleagues and I at 
Dartmouth have published work [3] that explores the attack sur-
face presented by FreeBSD’s USB stack, and the tools to mount 
such an attack. Andy Davis wrote an extensive whitepaper on 
USB driver vulnerabilities in 2013 [5]. As I mentioned earlier, 
Microsoft found a vulnerability, fixed it, and shipped the fix in its 
monthly Patch Tuesday event as opposed to waiting for a larger 
Service Pack update, evidence that Microsoft is convinced this 
area is worth defending as well.



www.usenix.org	   AU G U S T 20 14   VO L .  3 9,  N O.  4  15

SECURITY
How USB Does (and Doesn’t) Work: A Security Perspective

Additionally, beyond the venerable microkernel model, a number 
of research projects have explored techniques to isolate device 
drivers in the name of system stability [2, 6, 10]. Microsoft has 
also started moving USB drivers to userspace. Though these 
measures won’t eliminate vulnerabilities, they will help contain 
side effects of potentially buggy drivers.

We’ve also developed tools to help find vulnerabilities in USB 
implementations. Travis Goodspeed created the open source 
Facedancer (Figure 4) board [1] to facilitate exploration of both 
host- and device-side USB stacks, and I wrote the Python-based 
software stack to drive it.

The Facedancer board hosts an MSP430 microcontroller con-
nected via SPI to a MAX3420 or MAX3421 USB controller. 
When connected to both a host machine and a target machine, 
the host can run Python code that causes the Facedancer to 
appear to the target as any USB device it wants. The Python 
framework handles as much or as little of the device enumera-
tion process as you want it to: It allows you to write in software 
any USB device you can imagine, well-behaved or not. The latter 
is key: We want to emulate USB devices that deliberately misbe-
have so that we can probe the robustness of existing USB stacks 
that are not suitable for static analysis (either because they are 
too complex or because they are closed source).

We currently have code that emulates a USB keyboard, a USB 
thumb drive, and a USB FTDI serial connection. All of these 
have been successfully tested against real operating systems’ 
USB stacks. The next step is to modify them to misbehave and 
see how the operating systems respond. If you’re interested in 
playing around with a Facedancer but you’d prefer not to dig 
out your soldering iron, you can buy pre-assembled (and pre-
flashed!) boards from http://int3.cc.

Mr. Samwise Gamgee holds that “it’s the job that’s never started 
as takes longest to finish.” We’ve started. It is my hope that this 
article raises awareness among the operating system commu-
nity that there may be exploitable vulnerabilities in this area of 
the code, and thus spur efforts to address them soon.

Figure 4: The Facedancer board
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