
12    AU G U S T 20 14  VO L . 3 9, N O. 4 	 www.usenix.org

SECURITYHow USB Does (and Doesn’t) Work
A Security Perspective

P E T E R C . J O H N S O N

Peter C. Johnson received his
bachelor’s degree from the
University of California, San
Diego and worked for a couple
of computer systems companies

in the Bay Area before escaping back to aca­
demia. He is currently polishing up his PhD
dissertation at Dartmouth (not coincidentally
related to security of USB stacks) and will
begin work as a visiting assistant professor of
computer science at Middlebury College in fall
2014. pete@cs.dartmouth.edu

USB devices are easy to take for granted: They’re innocuous by their
nature (who’s afraid of a keyboard?) and by their ubiquity. However,
the architecture of the Universal Serial Bus ecosystem is surpris-

ingly complex and deeply embedded in modern operating systems. Further-
more, having risen to awareness on the backs of traditionally “dumb” devices
like keyboards and mice, the features of the USB protocol that very much
resemble wide-area networking protocols can be underappreciated. This
combination of complexity, embeddedness, and underappreciation is the
unholy trinity of security “features.” In the following paragraphs, I hope to
sprinkle some holy water on this situation, so come along while I first share
some fire and brimstone, then give reason for hope. To the Batmobile!

“It can’t be that bad,” you’re saying to yourself, “a USB attack requires physical access.”
While absolutely true, this misses a crucial technicality: An attack over USB must indeed
be delivered physically, but the attacker herself need not be physically present. How many
people, upon finding a USB thumb drive lying on the ground, are able to resist the temptation
to plug it into the first computer they find? Sufficient anecdotal evidence exists to suggest
the number is “few enough for us to worry” (though I wish you the best of luck in getting IRB
approval to verify this experimentally). I don’t mean to imply that the physical nature of USB
is impotent as a defense, but that it is not dependable.

Speaking of Stuxnet, once the USB drive prepared by [REDACTED] was plugged into a
machine beyond the defensive air gap, the “vulnerability” it initially exploited was that Win-
dows was configured to execute autorun.inf on any inserted devices. The realization that
such critical systems were thus (mis)configured no doubt makes the sysadmin- and secu-
rity-minded out there a bit light-headed, and the same people might be tempted to breathe a
sigh of relief that the initial infection vector could be so easily shut off. Completely setting
aside the raft of zero-day exploits also employed by Stuxnet, indulging in the aforementioned
sigh of relief is a bit premature.

How Bad Is It Really?
In March 2013, Microsoft patched three similar vulnerabilities (CVE-2013-1285, CVE-
2013-1286, CVE-2013-1287) in all extant versions of Windows that allowed “escalation of
privilege” [4]. NIST’s National Vulnerability Database puts it a bit more starkly [7–9]:

◆◆ Access Complexity: Low

◆◆ Authentication Required: None

◆◆ Confidentiality Impact: Complete

◆◆ Integrity Impact: Complete

◆◆ Availability Impact: Complete

These were not system configuration issues, like failing to disable execution of autorun.inf;
these were bugs in the kernel’s USB stack, ring-0 code that is run automatically every
time a USB device is plugged in to the system. Running such code with such privileges is a

www.usenix.org	   AU G U S T 20 14  VO L . 3 9, N O. 4  13

SECURITY
How USB Does (and Doesn’t) Work: A Security Perspective

somewhat natural consequence of the “U” in USB: To support a
broad array of devices, the kernel must get the device to identify
itself so that the kernel can load the appropriate driver. This
process is called “bus enumeration” (because the host is taking
roll of devices on the bus) and looks something like this:

Kernel: Stop! What is your name?

Device: It is Arthur, King of the Britons.

Kernel: What is your quest?

Device: To seek the Holy Grail.

Kernel: What is the airspeed of an unladen swallow?

The device’s response at this point is key. If the answer is “I don’t
know,” the device finds itself tossed from the Bridge of Death,
never to return; if the answer is “What do you mean? An African
or European swallow?” the kernel loses its mind and the Bridge
of Death is no longer guarded. This example is surprisingly illus-
trative and not just the injection of a predictable computer nerd
trope: A device can respond according to the USB protocol with
an identification the kernel accepts, it can respond according
to the protocol with an identification the kernel rejects (“I don’t
know”), or it can deviate from the protocol entirely (“African or
European?”).

If you squint only a bit, the bus enumeration process caricatured
in Figure 1 bears more than a passing resemblance to the three-
step TCP handshake or the request-response nature of an SMTP
transaction. Figure 1 shows the enumeration process in the form
of the ladder diagram we all know and love from the networking
world. Indeed, the USB protocol sports a great number of fea-

tures reminiscent of traditional network protocols: addressing,
packetized data, sequence numbers, acknowledgments, and so
on. (I’ll return to this comparison later on, I promise.)

The bugs Microsoft patched in 2013 were failures to correctly
handle protocol deviations that allowed complete system com-
promise. Unfortunately, precise details on the patched vulner-
abilities are difficult to come by, though we have good reason to
believe the problems arose when parsing descriptors during enu-
meration. Parsing is one of those oft-underappreciated aspects
of protocol implementation that should be relatively straight-
forward to get right, yet can lead to rather catastrophic failures.
In the case of bus enumeration, the complexity of the messages
involved can’t have helped. Figures 2 and 3 show a couple of
packets sent during enumeration, specifically the host-to-device
message that requests a configuration and the device-to-host
response. (The specific semantics aren’t important, so don’t
worry if “configurations,” “interfaces,” and “endpoints” mean
nothing to you.)

The configuration request shown in Figure 2 is fairly simple,
but the response (Figure 3) is anything but. After the standard

Figure 1: USB bus enumeration process as a ladder diagram

Figure 2: Bit-level description of message sent during bus enumeration
from host to device requesting configuration descriptor

Figure 3: Bit-level description of message sent during bus enumeration
from device to host containing configuration descriptors

14    AU G U S T 20 14  VO L . 3 9, N O. 4 	 www.usenix.org

SECURITY
How USB Does (and Doesn’t) Work: A Security Perspective

header stuff (the details of which—barring the length fields—are
secondary for this discussion), the device sends the descriptors
of all interfaces contained within that particular configura-
tion. Again, what a USB interface is doesn’t really matter right
now; the important point is that it’s another message format that
needs to be parsed. Not just that, but interfaces contain end-
points, the descriptors for which are also embedded in this single
response. The result is a (relative) ton of data with all manner of
length fields littered throughout, whose correct interpretation is
vital to the correct interpretation of the message as a whole, and
which are mutually dependent—that is, if the length field of one
descriptor is messed up, the rest of the parse necessarily goes off
the deep end.

This complexity makes implementing both host- and device-side
logic dealing with descriptors a delicate task, but it gets better!

The Device Is the Application
Let’s now move up the stack a bit and look at the application
layer. In the world of networking, applications are, practically
speaking, presented with their choice of either streams (TCP) or
datagrams (UDP). Beyond that, they’re more or less on their own,
although standards like SMTP and DNS have been created to
enforce some consistency (and, hopefully, quality). Proprietary
protocols, on the other hand, are a completely different story:
Vendors can and do design and implement protocols however
they darn well please, which frequently results in the less-good
kind of media attention. (Diebold, anyone?)

Fortunately for us innocent bystanders, some of the local effects
of poorly designed or implemented application protocols can be
mitigated by running server processes as an unprivileged user
or in a chroot jail. Ideally, then, if a vulnerability in a protocol
design or implementation is discovered, only resources owned by
the unprivileged user or those within the chroot jail are suscep-
tible to compromise. Other methods, including virtual machines
and Linux containers, provide isolation sufficient to protect
against whole-system compromise, although it isn’t immediately
clear how any of these map to the USB realm.

The USB protocol allows similar encapsulation (indeed, the USB
Mass Storage Specification calls for stuffing raw SCSI com-
mands inside USB packets much like iSCSI stuffs them inside
IP packets). This freedom brings with it the same double-edged
sword as in the networking world: Although developers can
define their own protocols to create exciting new applications,
they also run the risk of introducing vulnerabilities as they
increase systems’ attack surfaces. But wait! USB doesn’t deal
with applications, it deals with devices!

The implications of this are numerous and not altogether
encouraging. First, it means that, once shipped, devices are often
stuck with a specific version of a protocol implementation—one

that might be buggy (i.e., vulnerable) and difficult to upgrade.
Second, the “server” implementation of the protocol frequently
exists in the device driver—which usually runs as kernel code—so
if the protocol is vulnerable, an exploit necessarily results in
total system compromise. Third, although standards such as
USB Mass Storage and USB Human Interface Device exist to
bring some sanity to the land, many devices ship binary driv-
ers. That’s right: Devices can ship black-box code, implement-
ing black-box protocols, that implicitly runs inside the kernel’s
address space.

That’s okay, at least USB doesn’t let the device pick which driver
to talk to—nothing like inetd for networking services. Hmm?
What’s that you say? I already described how a device identifies
itself to the kernel? And there’s nothing to stop a device from
identifying itself as a device with a known-vulnerable driver?
And the kernel will happily load said driver and let the device
talk to it, no questions asked? Well, that’s potentially worrisome.

Unfortunately, it’s true: In addition to the potentially unreliable
nature of USB device driver protocols and implementations, a
newly plugged device is in charge of choosing precisely which
device driver to communicate with. To make matters worse,
modern operating systems ship with support for a huge number
of devices, many drivers for which haven’t seen maintenance in
years. To think there aren’t exploitable vulnerabilities lurking
among that crufty code would be naïve.

Okay, I’m Scared. Help?
In the preceding paragraphs, I’ve painted a pretty bleak picture.
The (sort of) good news is that we don’t know of any vulner-
abilities in extant USB stacks. Of course, that doesn’t mean there
aren’t any, nor does it mean that other people don’t know about
them or, if they do, that they aren’t actively exploiting them. I
said at the beginning that I’d give reason for hope, and here’s
where that comes in. I also said I’d return to the similarities
between the USB architecture and the networking systems we
all know and love. Two birds, one stone.

It’s true that USB is an underappreciated attack vector; in con-
trast, networks are not. Because the two are so similar, we can
take advantage of decades of tools, techniques, research, and lore
in defending networks and apply it to the task of defending USB.

First and foremost, we know there’s a problem and, as G.I. Joe
would say, “Knowing is half the battle.” My colleagues and I at
Dartmouth have published work [3] that explores the attack sur-
face presented by FreeBSD’s USB stack, and the tools to mount
such an attack. Andy Davis wrote an extensive whitepaper on
USB driver vulnerabilities in 2013 [5]. As I mentioned earlier,
Microsoft found a vulnerability, fixed it, and shipped the fix in its
monthly Patch Tuesday event as opposed to waiting for a larger
Service Pack update, evidence that Microsoft is convinced this
area is worth defending as well.

www.usenix.org	   AU G U S T 20 14  VO L . 3 9, N O. 4  15

SECURITY
How USB Does (and Doesn’t) Work: A Security Perspective

Additionally, beyond the venerable microkernel model, a number
of research projects have explored techniques to isolate device
drivers in the name of system stability [2, 6, 10]. Microsoft has
also started moving USB drivers to userspace. Though these
measures won’t eliminate vulnerabilities, they will help contain
side effects of potentially buggy drivers.

We’ve also developed tools to help find vulnerabilities in USB
implementations. Travis Goodspeed created the open source
Facedancer (Figure 4) board [1] to facilitate exploration of both
host- and device-side USB stacks, and I wrote the Python-based
software stack to drive it.

The Facedancer board hosts an MSP430 microcontroller con-
nected via SPI to a MAX3420 or MAX3421 USB controller.
When connected to both a host machine and a target machine,
the host can run Python code that causes the Facedancer to
appear to the target as any USB device it wants. The Python
framework handles as much or as little of the device enumera-
tion process as you want it to: It allows you to write in software
any USB device you can imagine, well-behaved or not. The latter
is key: We want to emulate USB devices that deliberately misbe-
have so that we can probe the robustness of existing USB stacks
that are not suitable for static analysis (either because they are
too complex or because they are closed source).

We currently have code that emulates a USB keyboard, a USB
thumb drive, and a USB FTDI serial connection. All of these
have been successfully tested against real operating systems’
USB stacks. The next step is to modify them to misbehave and
see how the operating systems respond. If you’re interested in
playing around with a Facedancer but you’d prefer not to dig
out your soldering iron, you can buy pre-assembled (and pre-
flashed!) boards from http://int3.cc.

Mr. Samwise Gamgee holds that “it’s the job that’s never started
as takes longest to finish.” We’ve started. It is my hope that this
article raises awareness among the operating system commu-
nity that there may be exploitable vulnerabilities in this area of
the code, and thus spur efforts to address them soon.

Figure 4: The Facedancer board

References
[1] GoodFET: http://goodfet.sourceforge.net.

[2] Silas Boyd-Wickizer and Nickolai Zeldovich, “Tolerat-
ing Malicious Device Drivers in Linux,” Proceedings of the
USENIX Annual Technical Conference, 2010.

[3] Sergey Bratus, Travis Goodspeed, Peter C. Johnson, Sean
W. Smith, and Ryan Speers, “Perimeter-Crossing Buses: A
New Attack Surface for Embedded Systems,” Proceedings
of the 7th Workshop on Embedded Systems Security (WESS
2012), 2012.

[4] Microsoft Corporation, “Vulnerabilities in Kernel-Mode
Drivers Could Allow Elevation of Privilege,” Microsoft
Security Bulletin MS13-027: https://technet.microsoft.com
/library/security/ms13-027, 2013.

[5] Andy Davis, “Lessons Learned from 50 Bugs: Common
USB Driver Vulnerabilities,” technical report, NCC Group,
2013.

[6] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg,
and Andrew S. Tanenbaum, “Fault Isolation for Device Driv-
ers,” Proceedings of the IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN ’09), 2009.

[7] NIST, Vulnerability Summary for CVE-2013-1285:
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE
-2013-1285, 2013.

[8] NIST, Vulnerability Summary for CVE-2013-1286:
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE
-2013-1286, 2013.

[9] NIST, Vulnerability Summary for CVE-2013-1287:
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE
-2013-1287, 2013.

[10] Michael M. Swift, Brian N. Bershad, and Henry M.
Levy, “Improving the Reliability of Commodity Operating
Systems,” Proceedings of the 19th ACM Symposium on Oper-
ating System Principles (SOSP ’03), 2003.

http://int3.cc/
http://goodfet.sourceforge.net/
https://technet.microsoft.com/library/security/ms13-027
https://technet.microsoft.com/library/security/ms13-027
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-1285
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-1285
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-1286
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-1286
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-1287
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-1287

