
12    F eb rua ry 20 14  Vo l . 3 9, N o. 1 	 www.usenix.org

HADOOP 2
What’s New

S a n j a y R a d i a a n d S u r e s h S r i n i v a s

Sanjay is co-founder and
architect at Hortonworks, and
an Apache Hadoop committer
and member of the Apache
Hadoop Project Management
Commitee (PMC). Prior to co-

founding Hortonworks, Sanjay was the chief
architect of core-Hadoop at Yahoo and part
of the team that created Hadoop. In Hadoop
he has focused mostly on HDFS, MapReduce
schedulers, high availability, compatibility, etc.
He has also held senior engineering positions
at Sun Microsystems and INRIA, where he
developed software for distributed systems
and grid/utility computing infrastructures.
Sanjay has a Ph.D. in Computer Science from
the University of Waterloo in Canada.
Follow Sanjay on Twitter: @srr
sanjay@hortonworks.com

Suresh is an Apache Hadoop
committer and member of
the Apache Hadoop Project
Management Commitee
(PMC). He is a long-term
active contributor to the

Apache Hadoop project. Prior to co-founding
Hortonworks, he served as a software
architect at Yahoo! working on Apache
Hadoop HDFS, where he developed features
and supported some of the largest installations
of Hadoop clusters. Suresh also worked for
Sylantro Systems in various senior technical
leadership roles and developed scalable real-
time infrastructure for hosted communications
services.
Follow Suresh on Twitter: @suresh_m_s
suresh@hortonworks.com

Hadoop 2 contains fundamental changes in the architecture that sig-
nificantly extend the platform, taking the compute platform beyond
MapReduce and introducing new application paradigms. Similarly,

the storage subsystem has been generalized to support other frameworks
besides HDFS. The new version significantly improves scalability and per-
formance in both the compute and storage layers, with disk performance up
to five times faster and the compute layer scaling to clusters with more than
100k concurrent tasks. Automatic failover of master servers now provides high
availability. We cover all these and other key Hadoop 2 features in this article.

Quick Background
Apache Hadoop is a scalable framework for storing and processing data on a cluster of com-
modity hardware nodes. Hadoop is designed to scale up from a single node to thousands of
nodes. Hadoop has two main components: a computing framework and Hadoop Distributed
File System (HDFS). HDFS uses the commodity server nodes and JBOD (Just a Bunch Of
Disks) storage drives to store the data and provide large aggregated I/O bandwidth to data.
The compute framework uses the same set of server nodes for computation. The key idea is
to move computation to where the data is. This enables scalable and efficient ways of storing
and processing data. Storage capacity, compute capacity, and I/O bandwidth can be scaled by
adding more servers.

HDFS has had a single master server for storing the file system metadata called the
NameNode. The files stored on HDFS are split into one or more blocks, typically of size 128
MB. These blocks are stored on slave nodes called DataNodes. To ensure data reliability,
multiple replicas of blocks are stored on a set of DataNodes. A client performs file system
operations such as creating, modifying, and deleting files at the NameNode. The NameNode
records these transactions in a journal, and the data for the files are written by the clients at
the DataNodes. The NameNode actively monitors the DataNodes, so if a replica of a block is
lost due to disk failures or node failures, new replicas are created.

Computation framework has a master server that manages the compute resources in the
slave nodes. It supports parallel, distributed programming paradigms over which a vast
amount of data can be processed in a reliable and fault-tolerant manner. Typically, the data
is processed in parallel using multiple tasks where each task processes a subset of the data.
Traditionally, the MapReduce paradigm is used to process the data in parallel. Hadoop 2.0
has a new compute framework called YARN, which supports MapReduce and other pro-
gramming paradigms.

Hadoop 2 Improvements
Architectural Evolution
Hadoop 2 has made fundamental architectural changes for both the compute and storage
sides of the platform.

www.usenix.org	   F eb rua ry 20 14  Vo l . 3 9, N o. 1  13

File Systems
HADOOP 2: What’s New

YARN—Architectural evolution in the
Compute Layer
Previously, compute resources on Hadoop were only available to
MapReduce programs and forced non-MapReduce applications
to be modeled as MapReduce. The YARN component generalizes
the compute layer to execute not just MapReduce style but other
application frameworks. As a result, YARN allows analytics
queries to be executed significantly more efficiently and has
allowed a new breed of applications, such as stream processing,
to be supported in a first-class manner. The new architecture is
more decentralized and allows Hadoop clusters to be scaled sig-
nificantly to more cores and servers. Further, it promises to offer
another significant future improvement: the IT department will
be able to consolidate other non-Hadoop clusters (such as HPC
or virtualization clusters) with the Hadoop cluster.

Decentralized Resource Management
Hadoop 1 had a single master server called a JobTracker to
manage both the compute resources and the jobs that use
the resources. YARN splits that function so that a Resource
Manager (RM) focuses on managing the cluster resources and
an Application Master (AM), one-per-running-application,
manages each running application (such as a MapReduce job).
The AM requests resources from the RM based on the needs
and characteristics of the application being run. For example,
a MapReduce application needs compute resources close to the
data and has Map and Reduce functions that can be scheduled in
phases. On the other hand, an MPI job may be compute-intensive
and requires all resources to be scheduled together.

First-Class Support for Different Application Types
Because the AM is separate from the RM, it can be customized
per application type. Hadoop 2 has a specialized AM for MapRe-
duce and another more generalized application framework
called Tez that allows generic directed-acyclic-graphs (DAGs)

of execution. Tez allows Hive and Pig
programs to be executed more naturally
as a single job instead of multiple MapRe-
duce phases, resulting in many orders of
magnitude performance improvements.
New breeds of applications for stream
processing, such as Samza and Storm on
YARN, also run as first-class applications
(Figure 1). This allows a consolidation of
clusters and compute resources to run het-
erogeneous applications, resulting in less
resource fragmentation and more efficient
utilization. For the IT department, this
means improved hardware capitalization
and simplified management.

Generalized Resource Modeling
Whereas Hadoop 1 modeled compute resources as Map or
Reduce slots, YARN allows a more generalized notion of
resources. YARN has started with the memory resource
(because it was closest to Hadoop 1’s “slot”) but will soon be
extended to support CPU, I/O, and network resources.

Architectural evolution in the Storage Layer
Hadoop cluster’s storage resources were previously available
only to HDFS. Similar to YARN, the new storage architecture
generalizes the block storage layer so that it can be used not only
by HDFS but also other storage services. The first use of this
feature is HDFS federation, which allows multiple instances of
HDFS namespaces to share the underlying storage. In future
versions of Hadoop, other storage services (such as key-value
storage) will use the same storage layer.

Another fundamental storage change that is being worked on is
support for heterogeneous storage. Hadoop 1 treated all storage
devices (be it spinning disks or SSDs) on a DataNode as a single
uniform pool; although one could store data on an SSD, one could
not control which data. Heterogeneous storage will be part of the
2014 release of Hadoop 2.x, where the system will distinguish
between storage types and also make the storage type informa-
tion available to frameworks and applications so that they can
take advantage of storage properties. Indeed, the approach is
general enough to allow us to treat even memory as a storage tier
for cached and temporary data.

Classic Enterprise Features
Hadoop was initially adopted by Web companies for large-scale
data processing. With Hadoop crossing the chasm, different use
cases and enterprises are migrating to Hadoop. With that comes
the expectation of support for features that enterprise users have
come to expect.

Figure 1: Comparison of Hadoop 1 and Hadoop 2 architectures

14    F eb rua ry 20 14  Vo l . 3 9, N o. 1 	 www.usenix.org

File Systems
HADOOP 2: What’s New

NameNode High Availability
While the raw storage layer in HDFS (the block storage layer) is
fully distributed and fault-tolerant, the file system metadata was
stored in a single master server called the NameNode. When the
NameNode is brought down for planned maintenance, or on rare
software or hardware failure, the cluster would be unavailable
until the NameNode is restarted. Distributions such as Horton-
works Data Platform (HDP) had cold failover for the NameNode
using industry standard frameworks, such as Linux HA and
VMware vSphere, in their Hadoop 1 distribution. Hadoop 2
adds support for a hot standby NameNode along with a journal
service. In case of failure of the active NameNode, automatic
failover is triggered and the standby NameNode becomes active.

Failover Controller
A new watchdog daemon called the ZKFC (ZooKeeper-based
Failover Controller) manages failover of NameNodes. This
daemon runs on each of the NameNodes and maintains a session
with the ZooKeeper. Using ZooKeeper for coordination, one of
the ZKFC becomes the leader and elects the local NameNode
as active. The ZKFC performs a periodic health check of the
NameNode. When the active NameNode fails health check, the
local ZKFC resigns as the leader. Similarly, when the active
NameNode machine fails, ZooKeeper detects the loss and
removes the ZKFC from the failed node as the leader. This results
in automatic failover; the ZKFC running on standby becomes the
leader and makes the local standby NameNode active.

Quorum Journal Manager
In Hadoop 2, the file system journal no longer needs external
NAS storage. The NameNode writes the journal to external
daemons called Journal Nodes. The Quorum Journal Manager
ensures every transaction is written to a quorum number of jour-
nal nodes using a distributed commit protocol based on Multi-
Paxos. Because only one NameNode can successfully write to a
quorum number of Journal Nodes, the corruption due to a split-
brain condition is avoided. This ensures that the redundant and
consistent copies of journal are persisted on the journal nodes.
The standby NameNode reads the transactions from the journal
and updates its state to stay in sync with the active NameNode.

NFS Support
Access to HDFS is usually done through the HDFS client library
or over HTTP REST APIs. Lack of seamless integration with the
client’s file system makes it difficult for users and impossible for
some applications to access HDFS. Hadoop 2 adds NFS version 3
support to make this integration easy.

NFS access is enabled using stateless NFS gateways. The NFS
gateway’s main functionality is translation of the NFS protocol
to the HDFS native protocol. The gateway is started as a daemon
on the slave nodes in a Hadoop cluster. The gateway supports
three services: rpcbind (or portmap), mountd, and nfsd. HDFS is
mounted on the client system, and applications can access HDFS
through the local file system.

Figure 2: ZKFCs monitor NameNodes, and while the active NameNode writes to JournalNodes, the standby NameNode reads from JournalNodes to keep
its state updated.

www.usenix.org	   F eb rua ry 20 14  Vo l . 3 9, N o. 1  15

File Systems
HADOOP 2: What’s New

HDFS Snapshots
Hadoop 2 adds support for file system snapshots. A snapshot is a
point-in-time image of the entire file system or a subtree of a file
system. A snapshot has many uses:

◆◆ Protection against user errors: An admin can set up a process to
take snapshots periodically. If a user accidentally deletes files,
these can be restored from the snapshot that contains the files.

◆◆ Backup: If an admin wants to back up the entire file system or a
subtree in the file system, the admin takes a snapshot and uses
it as the starting point of a full backup. Incremental backups are
then taken by copying the difference between two snapshots.

◆◆ Disaster recovery: Snapshots can be used for copying consistent
point-in-time images over to a remote site for disaster recovery.

The snapshots feature supports read-only snapshots; it is imple-
mented only in the NameNode, and no copy of data is made when
the snapshot is taken. Snapshot creation is instantaneous. All
the changes made to the snapshotted directory are tracked using
modified persistent data structures to ensure efficient storage
on the NameNode.

RPC improvements and Wire compatibility
Hadoop 2 has several improvements to the RPC layer shared
by HDFS, YARN, and MapReduce v2. The on-the-wire proto-
col now uses protocol buffers and is no longer based on Java
serialization. This helps in extending the protocol in the future
without breaking the wire protocol compatibility. RPC also adds
support for client-side retries of the operation, a key functional-
ity for supporting highly available server implementation. These
improvements help in running different versions of daemons
within the cluster, paving the way for rolling upgrades.

Other HDFS Improvements
I/O improvements
Improvements to HDFS speed and efficiency are added on an
ongoing basis. There are many improvements to HDFS interfaces.
A better short-circuit interface based on UNIX Domain Sockets
allows clients to read from the local file system directly instead
of inefficiently over a socket from the DataNode. This interface
also now supports zero copy reads. The CRC checksum calcula-
tion done during both reads and writes is now optimized using
the Intel SSE4.2 CRC32 instruction. All of these improvements
have made I/O 2.5 to 5 times faster than the previous releases.

Append Support
Hadoop 1 required HDFS files to be immutable once they were
created. Hadoop 2 allows one to append data to a previously
created file.

Expanding the Community and Use Cases
YARN in Hadoop 2 expands the ecosystem beyond MapReduce
and allows new kinds of applications to run on the cluster. Simi-
larly the generalization of storage promises Hadoop storage to be
used beyond HDFS.

Windows Support
Hadoop was originally developed to support the UNIX family
of operating systems. With Hadoop 2, the Windows operating
system is natively supported. This work is simplified by the fact
that Hadoop was written in Java. The dependencies on UNIX for
compute and storage resource control now has been generalized
to support Windows. This extends the reach of Hadoop signifi-
cantly to a sizable Windows Server market.

OpenStack Cloud Support
There is a growing trend to run Hadoop-on-demand and shared
infrastructure. Hadoop 2 supports the OpenStack Swift file sys-
tem, and it has topology improvements for virtualized environ-
ments. With OpenStack support for spinning Hadoop clusters up
and down, Hadoop can now be run on virtualized hardware, both
in public and private datacenter clouds.

Next Steps
Hadoop, which was originally designed around batch processing
using commodity disks and servers, is changing in the face of a
number of trends. The Big Data application space and Hadoop
usage pattern, along with the underlying hardware technol-
ogy and platform, are rapidly evolving. Further, the increasing
prevalence of cloud infrastructure, both public and private, is
influencing Hadoop development. Hadoop is evolving to deal
with changes in how clusters are being built. HDFS and YARN
architecture are growing to adapt to such changes.

Hadoop has become the de facto kernel for the Big Data platform.
These exciting developments are being driven by a dedicated
Apache community, all in the open. People interested in par-
ticipating in this technological revolution are welcome to visit
http://hadoop.apache.org.

