
16    D ece m b er 20 13  Vo l . 3 8 N o. 6 	 www.usenix.org

Dowser: A Guided Fuzzer for Finding Buffer
Overflow Vulnerabilities
I s t v a n H a l l er , A s i a S l o w i n s k a , M a t t h i a s Ne u g s ch w a n d t n er ,
a n d H erber t B o s

Istvan Haller is a PhD student
in the Systems and Network
Security group at the Vrije
Universiteit Amsterdam. His
current research focuses on

automatic analysis of software systems and
its application to enhance system security.
i.haller@vu.nl

Asia Slowinska is an assistant
professor in the Systems and
Network Security group at the
Vrije Universiteit Amsterdam.
Her current research focuses on

developing techniques to automatically analyze
and reverse engineer complex software that is
available only in binary form. asia@few.vu.nl

Matthias Neugschwandtner is
a PhD student at the Secure
Systems Lab at the Vienna
University of Technology.
mneug@iseclab.org

Herbert Bos is a full professor in
Systems and Network Security
at Vrije Universiteit Amsterdam.
He obtained his PhD from
Cambridge University Computer

Laboratory (UK). He is proud of all his (former)
students, three of whom have won the Roger
Needham PhD Award for best PhD thesis
in systems in Europe. In 2010, Herbert was
awarded an ERC Starting Grant for a project on
reverse engineering that is currently keeping
him busy. herbertb@few.vu.nl

Buffer overflows have long plagued existing software systems, making
them vulnerable to attackers. Our tool, Dowser, aims to tackle this
issue using efficient and scalable software testing. Dowser builds on

a new software testing paradigm, which we call dowsing, that focuses the
testing effort around relevant application components. This paradigm proved
successful in practice, as Dowser found real bugs in complex applications
such as the nginx Web server and the ffmpeg multimedia framework.

Buffer overflows represent a long-standing problem in computer science, first identified in
a US Air Force study in 1972 [2] and famously used in the Morris worm in 1988. Even after
four decades, buffer overflows are perennially in the top three of the most dangerous soft-
ware errors. Recent studies [8] suggest that the situation will not change soon. One way to
handle them is to harden the binary using stack canaries, address space randomization, and
the like in the hope that the program will crash when the buffer overflow bug is triggered;
however, although crashing is better than being pwned, crashes are undesirable, too.

Thus, vendors prefer to squash bugs beforehand and typically try to find as many as they can
by means of fuzz testing. Fuzzers feed programs invalid, unexpected, or random data to see
whether they crash or exhibit unexpected behavior. Recent research in testing has led to the
development of whitebox fuzzing [3, 4, 5]. By means of symbolic execution, whitebox fuzzing
exercises all possible execution paths through the program and thus uncovers all possible
bugs, although it may take years to do.

Imagine that you are a software tester and you are given a binary, without knowledge about
the application internals or its specification. Where do you start? What features will you
be looking for? Intuitively, you start from some random input that you refine based on the
observed output. Seeing that you will spend most of your time figuring out the input seman-
tics, instead of testing the underlying functionality itself, is not difficult. These are the same
challenges that symbolic execution faces when testing applications without developer input.

In this article, we introduce an alternative testing approach that we call dowsing. Rather
than testing all possible execution paths, this technique actively searches for a given
family of bugs. The key insight is that careful analysis of a program lets us pinpoint the
right places to probe and the appropriate inputs to do so. The main contribution is that our
fuzzer directly homes in on the bug candidates and uses a novel “spot-check” approach in
symbolic execution. Specifically, Dowser applies this approach to buffer overf low bugs,
where we achieve significant speed-ups for bugs that would be hard to find with most
existing symbolic execution engines.

In summary, Dowser is a new fuzzer targeted at vendors who want to test their code for buf-
fer overflows and underflows. We implemented the analyses of Dowser as LLVM [7] passes,
whereas the symbolic execution step employs S2E [4]. Finally, Dowser is a practical solution.
Rather than aiming for all possible security bugs, it specifically targets the class of buffer
overflows (one of the most, if not the most, important class of attack vectors for code injec-
tion). So far, Dowser has found several real bugs in complex programs such as nginx, ffmpeg,

www.usenix.org	   D ece m b er 20 13  Vo l . 3 8 N o. 6  17

SECURITY
Dowser: A Guided Fuzzer for Finding Buffer Overflow Vulnerabilities

and inspircd. Most of them are extremely difficult to find with
existing symbolic execution tools.

Dowsing for Candidate Instructions
Dowser builds on the concept of vulnerability candidates, that is,
program locations that are relevant to a specific bug type, in our
case buffer overflows. In other words, it scans the binary for fea-
tures that are possible indications for those hard-to-find buffer
overflows. For instance, for a buffer overflow to occur, we need
code that accesses buffers in a loop. Additionally, we build on the
intuition that code with convoluted pointer arithmetic and/or
complex control flow is more prone to such memory errors than
straightforward array accesses. Moreover, by focusing on such
code, Dowser prioritizes bugs that are complicated—typically,
the kind of vulnerabilities that static analysis or random fuzzing
cannot find. The aim is to reduce the time wasted on shallow
bugs that could also have been found using existing methods. In
this section, we explain how we identify and rank the vulnerabil-
ity candidates.

Identifying the Interesting Spots
Previous research has shown that complex code really is more
error prone than simple code for bugs in general; however, Zim-
mermann et al. [9] also argued that we need metrics that exploit
the unique characteristics of specific vulnerabilities, e.g., buffer
overflows or integer overruns. So how do we design a good met-
ric for buffer overflows?

Intuitively, convoluted pointer computations and control flows
are hard to follow by a programmer, and thus more bug prone.
Therefore, we select vulnerability candidates, by focusing on
“complex” array accesses inside loops. Further, we limit the
analysis to pointers that evolve together with loop induction
variables, the pointers that are repeatedly updated to access
(various) elements of an array.

Prioritize, Prioritize, Prioritize...
After obtaining a set of vulnerability candidates, Dowser priori-
tizes them according to the 80-20 Pareto principle: we want to
discover the majority of software bugs while testing only a subset
of the potentially vulnerable code fragments. While all the array
accesses that evolve with induction variables are potential targets,
Dowser prioritizes them according to the complexity of the data-
and control-flows for the array index (pointer) calculations.

For each candidate loop, it first statically determines (1) the set
of all instructions involved in modifying an array pointer (we
will call this a pointer’s analysis group), and (2) the conditions
that guard this analysis group (for example, the condition of an
if or while statement containing the array index calculations).
Next, it labels all such sets with scores reflecting their complex-
ity. It may happen that the data-flow associated with an array
pointer is simple, but the value of the pointer is hard to follow due

to some complex control changes. For this reason, Dowser also
considers the complexity of the variables involved in condition-
als. For a detailed description of the procedure, refer to [6].

We emphasize that our complexity metric is not the only way
to rank the buffer accesses. For instance, we could also use the
length of a loop, the number of computations involved in the
computation of the array index, or some other heuristic. In fact,
Dowser does not care which ranking function is used, as long as
it prioritizes the accesses in the best possible way. In our lab, we
have evaluated several such functions and, so far, the complex-
ity metric performed best. For instance, Figure 1 compares
Dowser’s complexity metric to count, a straightforward scoring
function that simply counts the number of instructions involved
in the computation of the array pointer.

We base the evaluation on a set of known vulnerabilities from
six real world programs: nginx, ffmpeg, inspircd, libexif, pop-
pler, and snort. Additionally, we consider the vulnerabilities in
sendmail tested by Zitser et al. [10]. For these applications, we
analyzed all buffer overf lows reported in CVE since 2009 to
find 17 that match our vulnerability model. Figure 1 illustrates
the results. Random ranking serves as a baseline; clearly both
count and Dowser perform better. In order to detect all 17 bugs,
Dowser must analyze 92.2% of all the analysis groups; however,
even with only 15% of the targets, we find almost 80% (13/17) of
all the bugs. At that same fraction of targets, count finds a little
more than 40% of the bugs (7/17). Overall, Dowser outperforms
count beyond the 10% in the ranking, and it reaches the 100%
bug score earlier than the alternatives, although the difference
is minimal.

Efficient Spot-Checking
The main purpose of spot-checking is to avoid the complexity
stemming from whole-program testing. For example, the nginx-
0.6.32 Web server [1] contains a buffer underrun vulnerability,
where a specially crafted input URI tricks the program into set-
ting a pointer to a location outside its buffer boundaries. When
this pointer is later used to access memory, it allows attackers

Figure 1: A comparison of random testing and two scoring functions:
Dowser’s and count. It illustrates how many bugs we detect if we test a
particular fraction of the analysis groups.

18    D ece m b er 20 13  Vo l . 3 8 N o. 6 	 www.usenix.org

SECURITY
Dowser: A Guided Fuzzer for Finding Buffer Overflow Vulnerabilities

to overwrite a function pointer and execute arbitrary code on
the system. Exhaustively testing the Web server to find this bug
is almost impossible due to the complexity of the HTTP pack-
ets used as input. Indeed, the existing tools didn’t discover the
vulnerability within eight hours. Dowser, however, ranked the
vulnerable array access at the fourth most complex out of a total
of 62 potentially vulnerable loops, and then found the bug within
five minutes.

As a baseline, spot-checking uses concolic execution [5], a com-
bination of concrete and symbolic execution, where the concrete
(fixed) input starts off the symbolic execution. Dowser enhances
concolic execution with the following two optimizations.

Finding Relevant Inputs
Typically only a part of the input influences a particular analy-
sis group. In our example, only the URI field from the HTTP
packet is relevant to the faulty parser. Dowser aims to identify
and enforce this correlation automatically. In technical terms,
Dowser uses dynamic taint analysis to determine which input
fields influence pointers dereferenced in the analysis group.
During the testing phase, Dowser only treats those fields as sym-
bolic and keeps the remaining ones unchanged.

Eliminating Irrelevant Code
The second optimization leverages the observation that only
the program instructions that influence the underlying pointer
arithmetic are relevant to buffer overflows. Thus, when check-
ing a particular spot, that is, a buffer access, Dowser analyzes
the associated loop a priori to find branch outcomes that are
most likely to lead to new pointer values. The results of this anal-
ysis are used to focus the testing effort around the most relevant
program paths. In the URI parser example, it would prioritize
branches that impact pointer arithmetic, and ignore those that
only affect the parsing result.

Dowser’s loop exploration procedure operates in two main
phases: learning and bug finding. In the learning phase, Dowser
assigns each branch a weight approximating the probability that
a path following this direction contains new pointer derefer-
ences. The weights are based on statistics of pointer value vari-
ance observed during symbolic execution with limited inputs.

In the bug finding phase, Dowser symbolically executes a real-
world-sized input in the hope of finding inputs that trigger a
bug. Dowser uses the weights from the learning phase to steer
its symbolic execution toward new and interesting pointer
dereferences. The goal of our heuristic is to avoid execution
paths that are redundant from the point of view of pointer
manipulation. Thus, Dowser shifts the target of symbolic
execution from traditional code coverage to pointer value
coverage. Therein lies the name we gave to this new search

heuristic, Value Coverage Search, to emphasize the data-cen-
tric approach that Dowser takes.

We highlight the benefits gained via spot-checking on the same
nginx example used so far. As mentioned in the beginning of
this section, the application itself is too complex for the baseline
concolic execution engine, which was unable to trigger the bug
within eight hours. Limiting the symbolic input to the given
URI field does allow S2E to detect the bug using its built-in
search heuristics (Depth-First Search and Code Coverage),
as we show in Figure 2; however, the reader can also notice an
exponential explosion in the search time, making the traditional
search heuristics inefficient when the input size grows beyond
six bytes. Although many tools recommend code coverage [5] as
the primary strategy to find bugs, in our experience it does not
help with buffer overflows, because memory corruptions require
a particular execution context. Even if 100% code coverage is
reached, these bugs may stay undetected. In contrast with these
results, our Value Coverage heuristic shows excellent scalability
with an almost linear increase in execution time in relation with
the input size.

Dowser in the Real World
Dowser detected nine memory corruptions from six real-world
applications of several tens of thousands LOC, including the
ffmpeg videoplayer of300k LOC. The other applications that
we looked at were nginx, inspircd, poppler, libexif, and snort.
The bug in ffmpeg and one of the bugs in poppler were also not
documented before. We run S2E for as short a time as possible,
(e.g., a single request/response in nginx and transcoding a single
frame in ffmpeg). Still, in most applications, vanilla S2E fails to
find bugs within eight hours, whereas Dowser is always capable
of triggering the bug within 15 minutes of testing the appropriate

Figure 2: A comparison of the different search heuristics while testing for
the vulnerability in nginx. In all instances the symbolic input is limited to
the URI field.

www.usenix.org	   D ece m b er 20 13  Vo l . 3 8 N o. 6  19

SECURITY
Dowser: A Guided Fuzzer for Finding Buffer Overflow Vulnerabilities

analysis group. More details about the evaluation can be found in
our paper [6].

Although our paper applies dowsing to the concrete class of buf-
fer overflows, the underlying principles are also valid for a wide
variety of bug families. Once we identify the unique feature set
characterizing each of them, we will be able to discover more vul-
nerable locations. Recent developments in the analysis of legacy
binaries also suggest that the techniques required by Dowser may
soon be applicable without the need of source code information.
Such developments would enable the efficient testing of legacy
binaries to learn about possible zero-day attacks within.

Conclusion
Dowser is a guided fuzzer that combines static analysis, dynamic
taint analysis, and symbolic execution to find buffer overflow
vulnerabilities deep in a program’s logic. It leverages a new
testing approach, called dowsing, that aims to actively search
for bugs in specific code fragments without having to deal with
the complexity of the whole binary. Dowser is a new, practical,

and complete fuzzing approach that scales to real applications
and complex bugs that would be hard or impossible to find with
existing techniques.

Acknowledgments
This work is supported by the European Research Council
through project ERC-2010-StG 259108-ROSETTA, the EU FP7
SysSec Network of Excellence and by the Microsoft Research
PhD Scholarship Program through the project MRL 2011-049.
The authors would like to thank Bartek Knapik for his help in
designing the statistical evaluation.

References
[1] CVE-2009-2629: Buffer Underflow Vulnerability in
Nginx: http://Cve.Mitre.Org/Cgi-Bin/Cvename.Cgi?Name
=CVE-2009-2629, 2009.

[2] J. P. Anderson, “Computer Security Technology Planning
Study,” Tech. Rep., Deputy for Command and Management
System, USA, 1972.

[3] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex
Systems Programs,” Proceedings of the 8th USENIX Sym-
posium on Operating Systems Design and Implementation
(2008), OSDI ’08.

[4] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A Plat-
form for In Vivo Multi-Path Analysis of Software Systems,”
Proceedings of the 16th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (2011), ASPLOS ’11.

[5] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated
Whitebox Fuzz Testing,” Proceedings of the 15th Annual
Network and Distributed System Security Symposium (2008),
NDSS ’08.

[6] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos,
“Dowsing for Overflows: A Guided Fuzzer to Find Buffer

Boundary Violations,” Proceedings of USENIX Security ’13
(Washington, DC, August 2013), USENIX.

[7] C. Lattner and V. Adve, “Llvm: A Compilation Framework
for Lifelong Program Analysis and Transformation,” Proceed-
ings of the 2004 International Symposium on Code Genera-
tion and Optimization (CGO ’04) (Palo Alto, California, March
2004).

[8] V. van der Veen, N. Dutt-Sharma, L. Cavallaro, and H. Bos,
“Memory Errors: The Past, the Present, and the Future,” Pro-
ceedings of the 15th international Symposium on Research in
Attacks, Intrusions and Defenses (2012), RAID ’12.

[9] T. Zimmermann, N. Nagappan, and L. Williams, “Search-
ing for a Needle in a Haystack: Predicting Security Vulnerabil-
ities for Windows Vista,” Proceedings of the 3rd international
Conference on Software Testing, Verification and Validation
(April 2010), ICST ’10.

[10] M. Zitser, R. Lippmann, and T. Leek, “Testing Static
Analysis Tools Using Exploitable Buffer Overflows from Open
Source Code,” Proceedings of the 12th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering
(2004), SIGSOFT ’04/FSE-12.

