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Buffer overflows have long plagued existing software systems, making 
them vulnerable to attackers. Our tool, Dowser, aims to tackle this 
issue using efficient and scalable software testing. Dowser builds on 

a new software testing paradigm, which we call dowsing, that focuses the 
testing effort around relevant application components. This paradigm proved 
successful in practice, as Dowser found real bugs in complex applications 
such as the nginx Web server and the ffmpeg multimedia framework.

Buffer overflows represent a long-standing problem in computer science, first identified in 
a US Air Force study in 1972 [2] and famously used in the Morris worm in 1988. Even after 
four decades, buffer overflows are perennially in the top three of the most dangerous soft-
ware errors. Recent studies [8] suggest that the situation will not change soon. One way to 
handle them is to harden the binary using stack canaries, address space randomization, and 
the like in the hope that the program will crash when the buffer overflow bug is triggered; 
however, although crashing is better than being pwned, crashes are undesirable, too.

Thus, vendors prefer to squash bugs beforehand and typically try to find as many as they can 
by means of fuzz testing. Fuzzers feed programs invalid, unexpected, or random data to see 
whether they crash or exhibit unexpected behavior. Recent research in testing has led to the 
development of whitebox fuzzing [3, 4, 5]. By means of symbolic execution, whitebox fuzzing 
exercises all possible execution paths through the program and thus uncovers all possible 
bugs, although it may take years to do.

Imagine that you are a software tester and you are given a binary, without knowledge about 
the application internals or its specification. Where do you start? What features will you 
be looking for? Intuitively, you start from some random input that you refine based on the 
observed output. Seeing that you will spend most of your time figuring out the input seman-
tics, instead of testing the underlying functionality itself, is not difficult. These are the same 
challenges that symbolic execution faces when testing applications without developer input.

In this article, we introduce an alternative testing approach that we call dowsing. Rather 
than testing all possible execution paths, this technique actively searches for a given 
family of bugs. The key insight is that careful analysis of a program lets us pinpoint the 
right places to probe and the appropriate inputs to do so. The main contribution is that our 
fuzzer directly homes in on the bug candidates and uses a novel “spot-check” approach in 
symbolic execution. Specifically, Dowser applies this approach to buffer overf low bugs, 
where we achieve significant speed-ups for bugs that would be hard to find with most 
existing symbolic execution engines.

In summary, Dowser is a new fuzzer targeted at vendors who want to test their code for buf-
fer overflows and underflows. We implemented the analyses of Dowser as LLVM [7] passes, 
whereas the symbolic execution step employs S2E [4]. Finally, Dowser is a practical solution. 
Rather than aiming for all possible security bugs, it specifically targets the class of buffer 
overflows (one of the most, if not the most, important class of attack vectors for code injec-
tion). So far, Dowser has found several real bugs in complex programs such as nginx, ffmpeg, 
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and inspircd. Most of them are extremely difficult to find with 
existing symbolic execution tools.

Dowsing for Candidate Instructions
Dowser builds on the concept of vulnerability candidates, that is, 
program locations that are relevant to a specific bug type, in our 
case buffer overflows. In other words, it scans the binary for fea-
tures that are possible indications for those hard-to-find buffer 
overflows. For instance, for a buffer overflow to occur, we need 
code that accesses buffers in a loop. Additionally, we build on the 
intuition that code with convoluted pointer arithmetic and/or 
complex control flow is more prone to such memory errors than 
straightforward array accesses. Moreover, by focusing on such 
code, Dowser prioritizes bugs that are complicated—typically, 
the kind of vulnerabilities that static analysis or random fuzzing 
cannot find. The aim is to reduce the time wasted on shallow 
bugs that could also have been found using existing methods. In 
this section, we explain how we identify and rank the vulnerabil-
ity candidates.

Identifying the Interesting Spots
Previous research has shown that complex code really is more 
error prone than simple code for bugs in general; however, Zim-
mermann et al. [9] also argued that we need metrics that exploit 
the unique characteristics of specific vulnerabilities, e.g., buffer 
overflows or integer overruns. So how do we design a good met-
ric for buffer overflows?

Intuitively, convoluted pointer computations and control flows 
are hard to follow by a programmer, and thus more bug prone. 
Therefore, we select vulnerability candidates, by focusing on 
“complex” array accesses inside loops. Further, we limit the 
analysis to pointers that evolve together with loop induction 
variables, the pointers that are repeatedly updated to access 
(various) elements of an array.

Prioritize, Prioritize, Prioritize...
After obtaining a set of vulnerability candidates, Dowser priori-
tizes them according to the 80-20 Pareto principle: we want to 
discover the majority of software bugs while testing only a subset 
of the potentially vulnerable code fragments. While all the array 
accesses that evolve with induction variables are potential targets, 
Dowser prioritizes them according to the complexity of the data- 
and control-flows for the array index (pointer) calculations.

For each candidate loop, it first statically determines (1) the set 
of all instructions involved in modifying an array pointer (we 
will call this a pointer’s analysis group), and (2) the conditions 
that guard this analysis group (for example, the condition of an 
if or while statement containing the array index calculations). 
Next, it labels all such sets with scores reflecting their complex-
ity. It may happen that the data-flow associated with an array 
pointer is simple, but the value of the pointer is hard to follow due 

to some complex control changes. For this reason, Dowser also 
considers the complexity of the variables involved in condition-
als. For a detailed description of the procedure, refer to [6].

We emphasize that our complexity metric is not the only way 
to rank the buffer accesses. For instance, we could also use the 
length of a loop, the number of computations involved in the 
computation of the array index, or some other heuristic. In fact, 
Dowser does not care which ranking function is used, as long as 
it prioritizes the accesses in the best possible way. In our lab, we 
have evaluated several such functions and, so far, the complex-
ity metric performed best. For instance, Figure 1 compares 
Dowser’s complexity metric to count, a straightforward scoring 
function that simply counts the number of instructions involved 
in the computation of the array pointer.

We base the evaluation on a set of known vulnerabilities from 
six real world programs: nginx, ffmpeg, inspircd, libexif, pop-
pler, and snort. Additionally, we consider the vulnerabilities in 
sendmail tested by Zitser et al. [10]. For these applications, we 
analyzed all buffer overf lows reported in CVE since 2009 to 
find 17 that match our vulnerability model. Figure 1 illustrates 
the results. Random ranking serves as a baseline; clearly both 
count and Dowser perform better. In order to detect all 17 bugs, 
Dowser must analyze 92.2% of all the analysis groups; however, 
even with only 15% of the targets, we find almost 80% (13/17) of 
all the bugs. At that same fraction of targets, count finds a little 
more than 40% of the bugs (7/17). Overall, Dowser outperforms 
count beyond the 10% in the ranking,  and it reaches the 100% 
bug score earlier than the alternatives, although the difference 
is minimal.

Efficient Spot-Checking
The main purpose of spot-checking is to avoid the complexity 
stemming from whole-program testing. For example, the nginx-
0.6.32 Web server [1] contains a buffer underrun vulnerability, 
where a specially crafted input URI tricks the program into set-
ting a pointer to a location outside its buffer boundaries. When 
this pointer is later used to access memory, it allows attackers 

Figure 1: A comparison of random testing and two scoring functions: 
Dowser’s and count. It illustrates how many bugs we detect if we test a 
particular fraction of the analysis groups.



18    D ece m b er 20 13  Vo l .  3 8 N o.  6 	 www.usenix.org

SECURITY
Dowser: A Guided Fuzzer for Finding Buffer Overflow Vulnerabilities

to overwrite a function pointer and execute arbitrary code on 
the system. Exhaustively testing the Web server to find this bug 
is almost impossible due to the complexity of the HTTP pack-
ets used as input. Indeed, the existing tools didn’t discover the 
vulnerability within eight hours. Dowser, however, ranked the 
vulnerable array access at the fourth most complex out of a total 
of 62 potentially vulnerable loops, and then found the bug within 
five minutes.

As a baseline, spot-checking uses concolic execution [5], a com-
bination of concrete and symbolic execution, where the concrete 
(fixed) input starts off the symbolic execution. Dowser enhances 
concolic execution with the following two optimizations.

Finding Relevant Inputs
Typically only a part of the input influences a particular analy-
sis group. In our example, only the URI field from the HTTP 
packet is relevant to the faulty parser. Dowser aims to identify 
and enforce this correlation automatically. In technical terms, 
Dowser uses dynamic taint analysis to determine which input 
fields influence pointers dereferenced in the analysis group. 
During the testing phase, Dowser only treats those fields as sym-
bolic and keeps the remaining ones unchanged.

Eliminating  Irrelevant Code
The second optimization leverages the observation that only 
the program instructions that influence the underlying pointer 
arithmetic are relevant to buffer overflows. Thus, when check-
ing a particular spot, that is, a buffer access, Dowser analyzes 
the associated loop a priori to find branch outcomes that are 
most likely to lead to new pointer values. The results of this anal-
ysis are used to focus the testing effort around the most relevant 
program paths. In the URI parser example, it would prioritize 
branches that impact pointer arithmetic, and ignore those that 
only affect the parsing result.

Dowser’s loop exploration procedure operates in two main 
phases: learning and bug finding. In the learning phase, Dowser 
assigns each branch a weight approximating the probability that 
a path following this direction contains new pointer derefer-
ences. The weights are based on statistics of pointer value vari-
ance observed during symbolic execution with limited inputs.

In the bug finding phase, Dowser symbolically executes a real-
world-sized input in the hope of finding inputs that trigger a 
bug. Dowser uses the weights from the learning phase to steer 
its symbolic execution toward new and interesting pointer 
dereferences. The goal of our heuristic is to avoid execution 
paths that are redundant from the point of view of pointer 
manipulation. Thus, Dowser shifts the target of symbolic 
execution from traditional code coverage to pointer value 
coverage. Therein lies the name we gave to this new search 

heuristic, Value Coverage Search, to emphasize the data-cen-
tric approach that Dowser takes.

We highlight the benefits gained via spot-checking on the same 
nginx example used so far. As mentioned in the beginning of 
this section, the application itself is too complex for the baseline 
concolic execution engine, which was unable to trigger the bug 
within eight hours. Limiting the symbolic input to the given 
URI field does allow S2E to detect the bug using its built-in 
search heuristics (Depth-First Search and Code Coverage), 
as we show in Figure 2; however, the reader can also notice an 
exponential explosion in the search time, making the traditional 
search heuristics inefficient when the input size grows beyond 
six bytes. Although many tools recommend code coverage [5] as 
the primary strategy to find bugs, in our experience it does not 
help with buffer overflows, because memory corruptions require 
a particular execution context. Even if 100% code coverage is 
reached, these bugs may stay undetected. In contrast with these 
results, our Value Coverage heuristic shows excellent scalability 
with an almost linear increase in execution time in relation with 
the input size.

Dowser in the  Real World
Dowser detected nine memory corruptions from six real-world 
applications of several tens of thousands LOC, including the 
ffmpeg videoplayer of300k LOC. The other applications that 
we looked at were nginx, inspircd, poppler, libexif, and snort. 
The bug in ffmpeg and one of the bugs in poppler were also not 
documented before. We run S2E for as short a time as possible, 
(e.g., a single request/response in nginx and transcoding a single 
frame in ffmpeg). Still, in most applications, vanilla S2E fails to 
find bugs within eight hours, whereas Dowser is always capable 
of triggering the bug within 15 minutes of testing the appropriate 

Figure 2: A comparison of the different search heuristics while testing for 
the vulnerability in nginx. In all instances the symbolic input is limited to 
the URI field.
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analysis group. More details about the evaluation can be found in 
our paper [6].

Although our paper applies dowsing to the concrete class of buf-
fer overflows, the underlying principles are also valid for a wide 
variety of bug families. Once we identify the unique feature set 
characterizing each of them, we will be able to discover more vul-
nerable locations. Recent developments in the analysis of legacy 
binaries also suggest that the techniques required by Dowser may 
soon be applicable without the need of source code information. 
Such developments would enable the efficient testing of legacy 
binaries to learn about possible zero-day attacks within.

Conclusion
Dowser is a guided fuzzer that combines static analysis, dynamic 
taint analysis, and symbolic execution to find buffer overflow 
vulnerabilities deep in a program’s logic. It leverages a new 
testing approach, called dowsing, that aims to actively search 
for bugs in specific code fragments without having to deal with 
the complexity of the whole binary. Dowser is a new, practical, 

and complete fuzzing approach that scales to real applications 
and complex bugs that would be hard or impossible to find with 
existing techniques.
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