
18    J U N E 20 14  VO L . 3 9, N O. 3 	 www.usenix.org

CLOUDOpenStack
M A R K L A M O U R I N E

Mark Lamourine is a senior
software developer at Red
Hat. He’s worked for the last
few years on the OpenShift
project. He’s a coder by training,

a sysadmin and toolsmith by trade, and an
advocate for the use of Raspberry Pi style
computers to teach computing and system
administration in schools. Mark has been a
frequent contributor to the ;login: Book Reviews
column. markllama@gmail.com

The goal of OpenStack is nothing less than to virtualize and automate
every aspect of a corporate computational infrastructure. The pur-
pose is to provide self-service access to all of the resources that tra-

ditionally have required the intervention of a collection of teams to manage.
In this article, I describe where OpenStack came from and what the various
parts do.

OpenStack is an implementation of Infrastructure as a Service (annoyingly abbreviated as
IaaS and amusingly pronounced “eye-ass”). Several commercial IaaS services are available,
with the best known being Amazon Web Services, Google Compute Engine, and Rackspace.
IaaS is also known as a “cloud” service, and there are also commercial products to create a
“private cloud,” most notably VMware.

OpenStack was developed as an alternative to the commercial cloud providers. With it, you
can create private or public cloud services and move resources between them. OpenStack
uses concepts and terminology that are compatible with Amazon Web Services and that are
becoming de facto standards.

Both Red Hat, through the Red Hat Distribution of OpenStack (RDO) community project,
and Canonical offer installers designed to make the installation of a demo or proof-of-con-
cept service relatively easy for those who want to experiment with running their own cloud.

Origin, History, and Release Naming
In 2010 Rackspace and NASA created the OpenStack Foundation with the goal of producing
an open source IaaS project. Since then, more than 150 other companies and organizations
have joined the project. NASA dropped out in 2012 citing lack of internal progress imple-
menting OpenStack services and redirected funding to using commercial cloud providers.
In the past two years, the pace of development and improvement has increased dramatically,
to the point that all three major commercial Linux distribution providers (Canonical, SuSE,
and Red Hat) have customized OpenStack offerings.

OpenStack development versioning employs a code-word scheme using English alphabetic
ordering. The first development cycle was code named Austin (2010.1) and was released in
October 2010. New versions have been released approximately every six months since the
initial release. These are the most recent development code names:

◆◆ Essex (2012.1)

◆◆ Folsom (2012.2)

◆◆ Grizzly (2013.1)

◆◆ Havana (2013.2)

◆◆ Icehouse (2014.1) (release pending as of this writing)

Once released, the stable version is numbered with the four-digit year and a single-digit
serial number, (YYYY.N). No one expects more than nine releases in a calendar year. Most
people continue to refer to them by their code names.

www.usenix.org	   J U N E 20 14  VO L . 3 9, N O. 3  19

CLOUD
OpenStack

The development pace is so rapid that the OpenStack foundation
only lists the current release and the previous one as supported
at any given time. I see the adoption by commercial distributions
as an indicator that they think the current code base is stable
enough to allow economical long-term support.

Any references to capabilities here will be to the Havana (2013.2)
release unless otherwise noted.

Function and Stability
OpenStack is designed as a set of agent services, each of which
manages some aspect of what would otherwise be a physical
infrastructure. Of course, the initial focus was on virtualized
computation, but there are now subservices that manage storage
(three ways), network topology, authentication, as well as a uni-
fied Web user interface. As with the development cycles, Open-
Stack uses code names for the active components that make up
the service. The service components are detailed below.

It’s been four years since the initial release, and it’s really only
with the Folsom (2012.2) release that enough components are
available and stable to attempt to create a reliable user service.
As development progresses, usage patterns are discovered that
indicate the need for creating new first-class components to
manage different aspects of the whole. The Folsom release was
the first to include a networking component (Neutron), which
had previously been part of the computation service (Nova/
Quantum).

Bare metal provisioning, which has been handled by a plugin to
Nova, is getting a service agent of its own (code named “Ironic,”
in Icehouse 2014.1), which will be more capable and flexible.
Communication between the components is currently carried
over an AMQP bus implemented using RabbitMQ or QPID. A
new OpenStack messaging and RPC service is in the works (code
named Oslo, also in Icehouse). Each of these new agent services
will replace and enhance some aspect of the current systems,
but one can hope that the existing components have become
stable enough that most changes will be additive rather than
transformative.

Components
OpenStack is enamored of code names, and for anyone inter-
ested in deploying an OpenStack service, the first task is to learn
the taxonomy. There are actually some good reasons to use code
names. OpenStack is meant to be a modular system; and, at least
once so far, an implementation of a subsystem (Quantum) has
been replaced with a completely new implementation (Neutron).

Most components are active agents. They subscribe to a messag-
ing service (AMQP) to accept commands and return responses.
Each service also has a CLI tool that can communicate directly
with the agent. The active components also have a backing data-
base for persistence across restarts.

Compute (Nova)
The core of an IaaS system is its virtualized computers. The
Nova service provides the compute resources for OpenStack. It
controls the placement and management of the virtual machines
within the running service. Originally, Nova also contained the
networking, which has since moved to Neutron.

Storage
OpenStack offers several flavors of persistent storage, each of
which is designed for a specific set of tasks.

IMAGE STORAGE (GLANCE)
Glance is the image store used for creating new running
instances or for storing the state of an instance that has been
paused. Glance takes complete file systems and bootable disk
images as input and makes them available to boot or mount on
running instances.

BLOCK STORAGE (CINDER)
Cinder is the OpenStack block storage service. This is where you
allocate additional disk space to your running instances. Cinder
storage is persistent across reboots. Cinder can be backed by
a number of traditional block storage services such as NFS or
Gluster.

OBJECT STORAGE (SWIFT)
Swift offers a way to store and retrieve whole blobs of data. The
data are accessed via a REST protocol, which can be coded into
applications using an appropriate API library. Object storage
provides a means for an application to store and share data
across different instances. The object store is arranged as a hier-
archical set of “container” objects, each of which can hold other
containers or discrete data objects. In this way, it corresponds
roughly to the structure of a file system.

Network (Neutron)
The Neutron service provides network connectivity for the Nova
instances. It creates a software-defined network (SDN) that
allows tight control over communication between instances, as
well as access from outside of the OpenStack network.

Authentication/Authorization (Keystone)
All of the OpenStack services require user access control,
and the Keystone service provides the user management and
resource control policy.

User Interface (Horizon)
The Horizon user interface is one of the more recent additions. It
provides a single-pane Web UI to OpenStack as a whole. It layers
a task-related view of OpenStack over the functional services,
which allows end users and administrators to focus on their jobs
without being concerned with…well, this list of agents.

20  J U N E 20 14  VO L . 3 9, N O. 3 www.usenix.org

CLOUD
OpenStack

Monitoring (Ceiliometer)
Another recent addition is the monitoring function provided by
the Ceiliometer service. Ceiliometer is focused on monitoring
and providing metrics for the OpenStack services themselves,
but the documentation claims that it is designed to be extensible.
This functionality would allow implementers to add probes and
metrics to reach inside instances and applications as well.

Orchestration (Heat)
The Heat service gives the OpenStack user a standardized
means to define complex configurations of compute, storage, and
networking resources and to apply them repeatably. Although
Heat deals mainly with managing the OpenStack resources, it has
interfaces with several popular OS and application-level con-
figuration management (CM) tools, including Puppet and Chef.

Heat uses templates to define reusable configurations. The user
defines a configuration including compute, storage, and net-
working as well as providing input to any OS configuration that
will be applied by a CM system.

Installation Tools
As mentioned, OpenStack is a complex service. However, it does
follow several standard patterns. Additionally, several efforts
are in progress to ease the installation process and to make
installs consistent.

Both RPM and Debian-based Linux systems have installer efforts.

Puppet Modules
Each of the OpenStack services has a corresponding Puppet
module to aid in installation and configuration. If you’re familiar
with both Puppet and OpenStack, you could probably use these
to create a working service, but this method isn’t recommended.

RDO—Packstack (RPM)
Packstack is intended for single host or small development or
demonstration setups. It’s produced by the RDO foundation,
which is the community version of Red Hat’s implementation of
OpenStack.

Packstack can run either as an interactive session, or it can
accept an answer file that defines all of the responses. It can
install the component services on a single host or a small set of
hosts.

RDO—The Foreman
The Foreman is primarily a hardware-provisioning tool, but it
also has features to make use of Puppet to define the OS and
application configuration of managed systems. The RDO project
has defined and packaged an installer, which makes use of the
Foreman host group definitions and the OpenStack Puppet

modules to create a working installation. With the Foreman, it is
possible to create more complex configurations by directly using
the Puppet module inputs.

Ubuntu OpenStack Installer (Debian Package)
Canonical and Ubuntu also have an OpenStack installer effort.
Canonical has taken a different approach from Red Hat. They
provide a bootable disk image that can be written to a USB stor-
age device or to a DVD. On first boot, the installer walks the user
through the process.

Conclusion
The idea of IaaS is too powerful to ignore in the long term.
Although it is still experiencing growing pains, so many players,
large and small, are now backing and contributing resources to
OpenStack that it’s a safe bet it will be around for a while and
will improve with time.

If you’re eyeing a service like Amazon Web Services and think-
ing, “I wish I could do that here,” then you should look at Open-
Stack. Plan to do several iterations of installation so that you can
get to know the component services and their interactions as
well as your real use cases. With commercial cloud service devel-
opers and project managers starting to get used to the idea of
on-demand resources, they’re going to be clamoring for it soon,
and OpenStack offers you the means to provide it.

References
A lot of people are working on OpenStack, so there are a lot of
references. These are just a few select ones to get started.

◆◆ OpenStack: http://www.openstack.org

◆◆ OpenStack documentation repository: http://docs
.openstack.org

◆◆ OpenStack Administrator’s Guide: http://docs.openstack
.org/admin-guide-cloud/content/

◆◆ Packstack: https://wiki.openstack.org/wiki/Packstack

SOFTWARE
◆◆ GitHub OpenStack: https://github.com/openstack

◆◆ GitHub Packstack: https://github.com/stackforge
/packstack

◆◆ GitHub OpenStack Puppet modules: https://github
.com/stackforge/?query=puppet-

VENDOR AND DISTRIBUTION COMMUNITIES
◆◆ Red Hat RDO: http://openstack.redhat.com/Main_Page

◆◆ Ubuntu: http://www.ubuntu.com/download/cloud
/install-ubuntu-cloud

Stay Connected...
www.usenix.org/facebook

twitter.com/lisaconference www.usenix.org/youtube

www.usenix.org/linkedin www.usenix.org/blog

www.usenix.org/gplus

SAVE THE DATE!

Sponsored by USENIX in cooperation with LOPSA

NOVEMBER 9–14, 2014
SEATTLE, WA

www.usenix.org/lisa14

USENIX’s LISA conference is the premier meeting place for professionals who make
computing work effi ciently across a variety of industries. If you’re an IT operations
professional, site-reliability engineer, system administrator, architect, software en-
gineer, researcher, or otherwise involved in ensuring that IT services are eff ectively
delivered to others—this is your conference, and we’d love to have you here.

The sessions at LISA ’14 will address the topics most relevant to those working in
information technology today, including:

• Systems Engineering
• Monitoring and Metrics
• DevOps
• Security
• Culture
• And much more!

The 6-day program includes invited talks, workshops, panels, AMA conversations,
training courses, and refereed paper and poster presentations. The on-site Hack
Lab will give attendees and speakers the opportunity to demo, collaborate, and
test out new ideas. Evening receptions and Birds-of-a-Feather sessions provide
opportunities to meet and network with those that share your interests.

There’s a better way to get your job done. Learn it at LISA.

