
16    O C TO B ER 20 13  VO L . 3 8 N O. 5 	 www.usenix.org

Hyper-Switch: A Scalable Software
Virtual Switching Architecture
K A U S H I K K U M A R R A M , A L A N L . C O X , A N D S C O T T R I X N E R

Kaushik Kumar Ram recently
graduated from Rice University
with a Ph.D. in Computer
Science. In his graduate
research work, he explored new

mechanisms and architectures for the network
subsystem in virtualized systems. He likes to
build systems software to solve interesting
problems in the areas of operating systems
and networking. He received his B.Tech in
Computer Science and Engineering from
Indian Institute of Technology in Guwahati,
India. kaukum@gmail.com

Alan L. Cox is an Associate
Professor of Computer Science
at Rice University and a
long-time contributor to the
FreeBSD project. Over the

years, his research has sought to address
fundamental problems at the intersection of
operating systems, computer architecture, and
networking. Prior to joining Rice, he earned
his B.S. at Carnegie Mellon University and his
Ph.D. at the University of Rochester. 
alc@rice.edu

Scott Rixner is an Associate
Professor of Computer Science
at Rice University. His research
focuses on the interaction
between operating systems,

runtime systems, and computer architectures;
memory controller architectures; and hardware
and software architectures for networking. He
works with both large server-class systems
and small embedded systems. Prior to joining
Rice, he received his Ph.D. from MIT.
rixner@rice.edu

In virtualized datacenters, the last hop switching happens inside a
server. In this article we describe the Hyper-Switch, a highly efficient
and scalable software-based network switch that works alongside driver

domains. Hyper-Switch outperforms existing virtual switches used in Xen
and KVM, especially for inter-VM network traffic, and this performance will
soon be critical in datacenters.

Machine Virtualization in Datacenters
Machine virtualization has become a cornerstone of modern datacenters; it enables server
consolidation as a means to reduce costs and increase efficiencies. Many cloud-based service
infrastructures use machine virtualization as one of their fundamental building blocks.
Further, it is also being used to support the utility computing model where users can “rent”
time in a large-scale datacenter. These benefits of machine virtualization are now widely
recognized. Consequently, the number of virtual servers in production is rapidly increasing.

The use of machine virtualization has led to considerable change to the datacenter network.
In particular, the communication endpoints within the datacenter are now virtual machines
(VMs), not physical servers. Consequently, the datacenter network now extends into the
server, and last hop switching occurs inside the physical server. In other words, a virtual
switch within the server is ultimately responsible for demultiplexing and forwarding packets
to their destinations.

Communication between servers within the same datacenter already accounts for a signifi-
cant fraction of a datacenter’s total network traffic [3]. Moreover, a recent study of multiple
datacenter networks reported that 80% of the traffic originating at servers in cloud data
centers never leaves a rack [1]. Further, the number of cores on a chip is predicted to grow to
64 in a few years and to 256–512 by the end of the decade [2]. If this prediction comes to pass,
then a rack of servers may be replaced by VMs in a single physical server, and the network
traffic that today never leaves a rack may instead never leave a server. These datacenter
trends necessitate the need for a high-performance virtual switch to support efficient com-
munication—especially between VMs—in virtualized servers.

Software Virtual Switching Solutions
There are many I/O architectures for network communication in virtualized systems. Of
these, software device virtualization is most widely used. This preference for software over
specialized hardware devices is due in part to the rich set of features—including security,
isolation, and mobility—that the software solutions offer. The software solutions can be
further divided into driver domain and hypervisor-based architectures. Driver domains are
dedicated VMs that host the drivers used to access the physical devices; they provide a safe
execution environment for the device drivers.

Arguably, hypervisors that support driver domains are more robust and fault tolerant, as
compared to the alternate solutions that locate the device drivers within the hypervisor. This
is becoming an important requirement, especially as servers in datacenters move toward
multi-tenancy; however, this reliability comes at a price because the use of driver domains

www.usenix.org	   O C TO B ER 20 13  VO L . 3 8 N O. 5  17

CLOUD
Hyper-Switch: A Scalable Software Virtual Switching Architecture

leads to significant software overheads that not only reduce the
achievable I/O performance but also severely limit I/O scalabil-
ity [8]. Specifically, the sharing of I/O buffers between the driver
domain and guest VMs is expensive because it requires hypervi-
sor intervention to maintain memory isolation.

There are fundamental problems with traditional driver domain
architectures. Essentially, the driver domain must be scheduled
to run whenever packets are waiting to be processed. As a result,
scheduling overheads are incurred while processing network
packets. Further, the driver domain must be scheduled in a
timely manner to avoid unpredictable delays in the processing of
network packets, which is very hard to achieve for all workloads.

In real-world virtualization deployments , dedicating proces-
sor cores to the driver domain is standard practice . This avoids
scheduling delays but often leaves cores idle. In fact, dedicat-
ing CPU resources for backend processing is not limited to just
driver domain-based architectures (e.g., SplitX [4]); however,
this can lead to underutilization of these cores. This goes against
one of the fundamental tenets of virtualization: to enable the
most efficient utilization of the server resources.

Hyper-Switch
We explored the virtual switching design space to see whether
we could achieve both high-performance and fault tolerance
at the same time. If you look at existing I/O architectures, the
virtual switch is implemented inside the same software domain
where the virtual devices are implemented and the device driv-
ers are hosted. For instance, all these components are imple-
mented inside a driver domain in Xen and the host OS in KVM.
This colocation is purely a matter of convenience because pack-
ets must be switched when they are moved between the virtual
devices and the device drivers.

We introduce the Hyper-Switch [7], which challenges the exist-
ing convention by separating the virtual switch from the domain

that hosts the device drivers. The Hyper-Switch is a highly
efficient and scalable software switch for virtualization plat-
forms that support driver domains. In particular, the hypervisor
includes the data plane of a flow-based software switch, while
the driver domain continues to safely host the device drivers.

Figure 1 illustrates the Hyper-Switch architecture. In Hyper-
Switch, the hypervisor implements just the data plane of the
virtual switch that is used to forward network packets between
VMs. The switch’s control plane is implemented in the manage-
ment layer. Incoming external network traffic is initially han-
dled by the driver domain because it hosts the device drivers, and
then is forwarded to the destination VM through Hyper-Switch.
For outgoing external traffic, these two steps are reversed. So
the virtual switch implementation is distributed across virtu-
alization software layers with only the bare essentials imple-
mented inside the hypervisor. The separation of control and data
planes is achieved using a flow-based switching approach. This
is similar to how switching is performed using OpenFlow [5].

Basic Design
Packet processing by Hyper-Switch begins at the transmitting
VM (or driver domain) where the packet originates and ends at
the receiving VM (or driver domain) where the packet has to be
delivered. Packet processing proceeds in four stages:

1.	 Packet transmission. In the first stage, the transmitting VM
pushes the packet to the Hyper-Switch for processing. Packet
transmission begins when the guest VM’s network stack
forwards the packet to its paravirtualized network driver. Then
the packet is queued for transmission by setting up descriptors
in the transmit ring.

2.	 Packet switching. In the second stage, the packet is switched
to determine its destination. Switching is triggered by a hyper
call from the transmitting VM and begins with reading the
transmit ring to find new packets. Each packet is then pushed
to Hyper-Switch’s data plane where it is switched using the
flow-based approach. The data plane must be able to read the
packet’s headers in order to switch it. Because the data plane is
located in the hypervisor, which has direct access to every VM’s
memory, it can read the headers directly from the transmitting
VM’s memory.

3.	 Packet copying. In the third stage, the switched packet is cop-
ied into the receiving VM’s memory. By default, the destination
VM is responsible for performing packet copies. Once switch-
ing is completed, the destination VM is notified via a virtual
interrupt. Subsequently, that VM issues a hypercall. While in
the hypervisor, the VM copies the packet into its memory. Note
that the packet is copied directly from the transmitting VM’s
memory to the receiving VM’s memory.

Figure 1: The Hyper-Switch architecture

18    O C TO B ER 20 13  VO L . 3 8 N O. 5 	 www.usenix.org

CLOUD
Hyper-Switch: A Scalable Software Virtual Switching Architecture

4.	 Packet reception. In the fourth and final stage, the paravirtu-
alized network driver in the destination VM pushes the newly
received packet into its network stack, where the packet is pro-
cessed and eventually handed to some application. Note that
the destination VM is already notified in the previous stage. So
packet reception can happen as soon as the hypercall for copy-
ing the packet is complete.

Optimizations
Another important contribution of this work is a set of optimiza-
tions that increase performance. They enable Hyper-Switch to
support both bulk and latency sensitive network traffic effi-
ciently. They include:

◆◆ Preemptive packet copying. Packet copies are performed
by default in a receiving VM’s context; however, delivering a
notification to a VM already requires entry into the hypervisor.
So packet copy is performed preemptively when the receiving
VM is being notified. In essence, the packet copy operation
is combined with the notification to the receiving VM. This
optimization avoids one hypervisor entry for every packet that
is delivered to a VM.

◆◆ Batching hypervisor entries. In the Hyper-Switch archi-
tecture, as described thus far, the transmitting VM enters the
hypervisor every time there is a packet to send. Moreover, the
receiving VM is notified every time there is a packet pending
in the internal receive queue. To mitigate these overheads,
we use VM state-aware batching, which amortizes the cost of
entering the hypervisor across several packets. This approach
to batching shares some features with the interrupt coalescing
mechanisms of modern network devices. Typically, in network
devices, the interrupts are coalesced irrespective of whether
the host processor is busy or not. But, unlike those devices,
Hyper-Switch is integrated within the hypervisor, where it can
easily access the scheduler to determine when and where a VM
is running. So a blocked VM can be notified immediately when
there are packets pending to be received by that VM. This en-
ables the VM to wake up and process the new packets without
delay. On the other hand, the notification to a running VM may
be delayed if it was recently interrupted.

◆◆ Offloading packet processing. In Hyper-Switch, by default,
packet switching is performed in the transmitting VM’s context
and packet copying is performed in the receiving VM’s context.
As a result, asynchronous packet switching does not occur
with respect to the transmitting VM, and asynchronous packet
copying does not occur with respect to the receiving VM;
however, concurrent and asynchronous packet processing can
significantly improve performance.

Concurrent packet processing can be achieved by polling all
the internal receive queues for packets waiting to be copied

and polling all the transmit rings for packets waiting to be
switched. This can be performed by processor cores that are
currently idle. In this scheme, packet copying is prioritized
over switching because packet copying is typically the more
expensive operation, and a receiving VM is more likely to be
performance bottlenecked than a transmitting VM.

The idle cores are woken up just when there is work to be
done. On the receive side, this can be ascertained precisely
when switched packets are pending to be copied at a VM.
Then one of the idle cores is chosen and woken up to per-
form the packet copies. A low-overhead mechanism is used
to offload work to the idle cores. Note that this mechanism
neither involves the scheduler nor requires any context-
switching; instead, it uses a simple interprocessor messag-
ing facility to directly request a specific idle core to copy
packets to the VMs. Also, this mechanism attempts to spread
the work across many idle cores to increase concurrency.
Further, the offload mechanism is tuned to take advantage of
CPU cache locality.

These optimizations enable efficient packet processing, better
utilization of the available CPU resources, and higher concur-
rency. In particular, they take advantage of Hyper-Switch data
plane’s integration within the hypervisor and its proximity to the
scheduler. As a result, Hyper-Switch enables much improved and
scalable network performance, while maintaining the robustness
and fault tolerance that derive from the use of driver domains.

Evaluation
We built a prototype of the Hyper-Switch architecture in the
Xen virtualization platform. Here the switch’s data plane was
implemented by porting parts of Open vSwitch [6] to the Xen
hypervisor. Open vSwitch’s control plane was used without
modification. We also developed a new paravirtualized network
interface for the guest VMs to communicate with the data plane.
The same interface was also used by the driver domain to for-
ward external network traffic.

Figure 2: Pairwise performance scalability results

www.usenix.org	   O C TO B ER 20 13  VO L . 3 8 N O. 5  19

CLOUD
Hyper-Switch: A Scalable Software Virtual Switching Architecture

Then we evaluated Hyper-Switch using this prototype in Xen.
The primary goal of this evaluation was to compare Hyper-
Switch with existing architectures that implement the virtual
switch either entirely within the driver domain or entirely
within the hypervisor. To achieve this, the end-to-end per-
formance under Hyper-Switch was compared to that under
Xen’s default driver domain-based architecture and KVM’s
hypervisor-based architecture. The evaluation showed that
Hyper-Switch’s performance was superior in terms of absolute
bandwidth as well as scalability as the number of VMs and
traffic flows were varied. Figure 2 shows the results from the
pairwise scalability experiments, where the number of VM pairs
was scaled up. Here, on a 32-core AMD machine, Hyper-Switch
achieved a peak net throughput of ~ 81 Gbps as compared to
only ~ 31 Gbps and ~ 47 Gbps under Xen and KVM, respectively.
Interested readers are referred to our USENIX publication that
includes more results from the evaluation [7].

Conclusion
In this work, we designed Hyper-Switch, which combines the
best of the existing last hop virtual switching architectures. It
hosted the device drivers in a driver domain to isolate any faults
and the last hop virtual switch in the hypervisor to perform
efficient packet switching. In particular, the hypervisor imple-
mented just the fast, efficient data plane of a flow-based soft-
ware switch. The driver domain was needed only for handling
external network traffic.

We also implemented several carefully designed optimizations
that enabled efficient packet processing, better utilization of
the available CPU resources, and higher concurrency. As a
result, the Hyper-Switch enabled much improved and scalable
network performance, while maintaining the robustness and
fault tolerance that derives from the use of driver domains. We
believe that these optimizations should be a part of any virtual
switching solution that aims to deliver high performance. The
Hyper-Switch architecture demonstrates that it is feasible to
switch packets between VMs at high-speeds without sacrificing
reliability.

References
[1] T. Benson, S. Akella, and D. A. Maltz, “Network Traffic
Characteristics of Data Centers in the Wild,” IMC (2010).

[2] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaral-
ingam, and D. Burger, “Dark Silicon and the End of Multi-
core Scaling,” Proceedings of the 38th Annual International
Symposium on Computer Architecture, ISCA ’11 (ACM, 2011),
pp. 365-376.

[3] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The
Cost of a Cloud: Research Problems in Data Center Networks,”
SIGCOMM Computer Communication Review, vol. 39, no. 1
(2009), pp. 68-73.

[4] A. Landau, M. Ben-Yehuda, and A. Gordon, “SplitX: Split
Guest/Hypervisor Execution on Multi-Core,” WIOV ’11:
Proceedings of the 4th Workshop on I/O Virtualization
(May 2011).

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow:

Enabling Innovation in Campus Networks,” SIGCOMM
Computer Communication Review, vol. 38, no. 2 (April 2008),
pp. 69-74.

[6] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and
S. Shenker, “Extending Networking into the Virtualization
Layer,” HotNets-VIII: Proceedings of the Workshop on Hot
Topics in Networks (October 2009).

[7] K. K. Ram, A. Cox, M. Chadha, and S. Rixner, “Hyper-Switch:
A Scalable Software Virtual Switching Architecture,” ATC
’13: Proceedings of the USENIX Annual Technical Conference
(June 2013).

[8] K. K. Ram, J. R. Santos, Y. Turner, A. L. Cox, and S. Rixner,
“Achieving 10 Gb/s Using Safe and Transparent Network
Interface Virtualization,” VEE ’09: Proceedings of the ACM
SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (March 2009), pp. 61-70.

