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In virtualized datacenters, the last hop switching happens inside a 
server. In this article we describe the Hyper-Switch, a highly efficient 
and scalable software-based network switch that works alongside driver 

domains. Hyper-Switch outperforms existing virtual switches used in Xen 
and KVM, especially for inter-VM network traffic, and this performance will 
soon be critical in datacenters.

Machine Virtualization in Datacenters
Machine virtualization has become a cornerstone of modern datacenters; it enables server 
consolidation as a means to reduce costs and increase efficiencies. Many cloud-based service 
infrastructures use machine virtualization as one of their fundamental building blocks. 
Further, it is also being used to support the utility computing model where users can “rent” 
time in a large-scale datacenter. These benefits of machine virtualization are now widely 
recognized. Consequently, the number of virtual servers in production is rapidly increasing.

The use of machine virtualization has led to considerable change to the datacenter network. 
In particular, the communication endpoints within the datacenter are now virtual machines 
(VMs), not physical servers. Consequently, the datacenter network now extends into the 
server, and last hop switching occurs inside the physical server. In other words, a virtual 
switch within the server is ultimately responsible for demultiplexing and forwarding packets 
to their destinations.

Communication between servers within the same datacenter already accounts for a signifi-
cant fraction of a datacenter’s total network traffic [3]. Moreover, a recent study of multiple 
datacenter networks reported that 80% of the traffic originating at servers in cloud data
centers never leaves a rack [1]. Further, the number of cores on a chip is predicted to grow to 
64 in a few years and to 256–512 by the end of the decade [2]. If this prediction comes to pass, 
then a rack of servers may be replaced by VMs in a single physical server, and the network 
traffic that today never leaves a rack may instead never leave a server. These datacenter 
trends necessitate the need for a high-performance virtual switch to support efficient com-
munication—especially between VMs—in virtualized servers.

Software Virtual Switching Solutions
There are many I/O architectures for network communication in virtualized systems. Of 
these, software device virtualization is most widely used. This preference for software over 
specialized hardware devices is due in part to the rich set of features—including security, 
isolation, and mobility—that the software solutions offer. The software solutions can be 
further divided into driver domain and hypervisor-based architectures. Driver domains are 
dedicated VMs that host the drivers used to access the physical devices; they provide a safe 
execution environment for the device drivers.

Arguably, hypervisors that support driver domains are more robust and fault tolerant, as 
compared to the alternate solutions that locate the device drivers within the hypervisor. This 
is becoming an important requirement, especially as servers in datacenters move toward 
multi-tenancy; however, this reliability comes at a price because the use of driver domains 
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leads to significant software overheads that not only reduce the 
achievable I/O performance but also severely limit I/O scalabil-
ity [8]. Specifically, the sharing of I/O buffers between the driver 
domain and guest VMs is expensive because it requires hypervi-
sor intervention to maintain memory isolation.

There are fundamental problems with traditional driver domain 
architectures. Essentially, the driver domain must be scheduled 
to run whenever packets are waiting to be processed. As a result, 
scheduling overheads are incurred while processing network 
packets. Further, the driver domain must be scheduled in a 
timely manner to avoid unpredictable delays in the processing of 
network packets, which is very hard to achieve for all workloads.

In real-world virtualization deployments , dedicating proces-
sor cores to the driver domain is standard practice . This avoids 
scheduling delays but often leaves cores idle. In fact, dedicat-
ing CPU resources for backend processing is not limited to just 
driver domain-based architectures (e.g., SplitX [4]); however, 
this can lead to underutilization of these cores. This goes against 
one of the fundamental tenets of virtualization: to enable the 
most efficient utilization of the server resources.

Hyper-Switch
We explored the virtual switching design space to see whether 
we could achieve both high-performance and fault tolerance 
at the same time. If you look at existing I/O architectures, the 
virtual switch is implemented inside the same software domain 
where the virtual devices are implemented and the device driv-
ers are hosted. For instance, all these components are imple-
mented inside a driver domain in Xen and the host OS in KVM. 
This colocation is purely a matter of convenience because pack-
ets must be switched when they are moved between the virtual 
devices and the device drivers.

We introduce the Hyper-Switch [7], which challenges the exist-
ing convention by separating the virtual switch from the domain 

that hosts the device drivers. The Hyper-Switch is a highly 
efficient and scalable software switch for virtualization plat-
forms that support driver domains. In particular, the hypervisor 
includes the data plane of a flow-based software switch, while 
the driver domain continues to safely host the device drivers.

Figure 1 illustrates the Hyper-Switch architecture. In Hyper-
Switch, the hypervisor implements just the data plane of the 
virtual switch that is used to forward network packets between 
VMs. The switch’s control plane is implemented in the manage-
ment layer. Incoming external network traffic is initially han-
dled by the driver domain because it hosts the device drivers, and 
then is forwarded to the destination VM through Hyper-Switch. 
For outgoing external traffic, these two steps are reversed. So 
the virtual switch implementation is distributed across virtu-
alization software layers with only the bare essentials imple-
mented inside the hypervisor. The separation of control and data 
planes is achieved using a flow-based switching approach. This 
is similar to how switching is performed using OpenFlow [5].

Basic Design
Packet processing by Hyper-Switch begins at the transmitting 
VM (or driver domain) where the packet originates and ends at 
the receiving VM (or driver domain) where the packet has to be 
delivered. Packet processing proceeds in four stages:

1.	  Packet transmission. In the first stage, the transmitting VM 
pushes the packet to the Hyper-Switch for processing. Packet 
transmission begins when the guest VM’s network stack 
forwards the packet to its paravirtualized network driver. Then 
the packet is queued for transmission by setting up descriptors 
in the transmit ring.

2.	  Packet switching. In the second stage, the packet is switched 
to determine its destination. Switching is triggered by a hyper
call from the transmitting VM and begins with reading the 
transmit ring to find new packets. Each packet is then pushed 
to Hyper-Switch’s data plane where it is switched using the 
flow-based approach. The data plane must be able to read the 
packet’s headers in order to switch it. Because the data plane is 
located in the hypervisor, which has direct access to every VM’s 
memory, it can read the headers directly from the transmitting 
VM’s memory.

3.	  Packet copying. In the third stage, the switched packet is cop-
ied into the receiving VM’s memory. By default, the destination 
VM is responsible for performing packet copies. Once switch-
ing is completed, the destination VM is notified via a virtual 
interrupt. Subsequently, that VM issues a hypercall. While in 
the hypervisor, the VM copies the packet into its memory. Note 
that the packet is copied directly from the transmitting VM’s 
memory to the receiving VM’s memory.

Figure 1: The Hyper-Switch architecture



18    O C TO B ER 20 13  VO L .  3 8 N O.  5 	 www.usenix.org

CLOUD
Hyper-Switch: A Scalable Software Virtual Switching Architecture

4.	  Packet reception. In the fourth and final stage, the paravirtu-
alized network driver in the destination VM pushes the newly 
received packet into its network stack, where the packet is pro-
cessed and eventually handed to some application. Note that 
the destination VM is already notified in the previous stage. So 
packet reception can happen as soon as the hypercall for copy-
ing the packet is complete.

Optimizations
Another important contribution of this work is a set of optimiza-
tions that increase performance. They enable Hyper-Switch to 
support both bulk and latency sensitive network traffic effi-
ciently. They include:

◆◆ Preemptive packet copying. Packet copies are performed 
by default in a receiving VM’s context; however, delivering a 
notification to a VM already requires entry into the hypervisor. 
So packet copy is performed preemptively when the receiving 
VM is being notified. In essence, the packet copy operation 
is combined with the notification to the receiving VM. This 
optimization avoids one hypervisor entry for every packet that 
is delivered to a VM.

◆◆ Batching hypervisor entries. In the Hyper-Switch archi-
tecture, as described thus far, the transmitting VM enters the 
hypervisor every time there is a packet to send. Moreover, the 
receiving VM is notified every time there is a packet pending 
in the internal receive queue. To mitigate these overheads, 
we use VM state-aware batching, which amortizes the cost of 
entering the hypervisor across several packets. This approach 
to batching shares some features with the interrupt coalescing 
mechanisms of modern network devices. Typically, in network 
devices, the interrupts are coalesced irrespective of whether 
the host processor is busy or not. But, unlike those devices, 
Hyper-Switch is integrated within the hypervisor, where it can 
easily access the scheduler to determine when and where a VM 
is running. So a blocked VM can be notified immediately when 
there are packets pending to be received by that VM. This en-
ables the VM to wake up and process the new packets without 
delay. On the other hand, the notification to a running VM may 
be delayed if it was recently interrupted.

◆◆ Offloading packet processing. In Hyper-Switch, by default, 
packet switching is performed in the transmitting VM’s context 
and packet copying is performed in the receiving VM’s context. 
As a result, asynchronous packet switching does not occur 
with respect to the transmitting VM, and asynchronous packet 
copying does not occur with respect to the receiving VM; 
however, concurrent and asynchronous packet processing can 
significantly improve performance.

Concurrent packet processing can be achieved by polling all 
the internal receive queues for packets waiting to be copied 

and polling all the transmit rings for packets waiting to be 
switched. This can be performed by processor cores that are 
currently idle. In this scheme, packet copying is prioritized 
over switching because packet copying is typically the more 
expensive operation, and a receiving VM is more likely to be 
performance bottlenecked than a transmitting VM.

The idle cores are woken up just when there is work to be 
done. On the receive side, this can be ascertained precisely 
when switched packets are pending to be copied at a VM. 
Then one of the idle cores is chosen and woken up to per-
form the packet copies. A low-overhead mechanism is used 
to offload work to the idle cores. Note that this mechanism 
neither involves the scheduler nor requires any context-
switching; instead, it uses a simple interprocessor messag-
ing facility to directly request a specific idle core to copy 
packets to the VMs. Also, this mechanism attempts to spread 
the work across many idle cores to increase concurrency. 
Further, the offload mechanism is tuned to take advantage of 
CPU cache locality.

These optimizations enable efficient packet processing, better 
utilization of the available CPU resources, and higher concur-
rency. In particular, they take advantage of Hyper-Switch data 
plane’s integration within the hypervisor and its proximity to the 
scheduler. As a result, Hyper-Switch enables much improved and 
scalable network performance, while maintaining the robustness 
and fault tolerance that derive from the use of driver domains.

Evaluation
We built a prototype of the Hyper-Switch architecture in the 
Xen virtualization platform. Here the switch’s data plane was 
implemented by porting parts of Open vSwitch [6] to the Xen 
hypervisor. Open vSwitch’s control plane was used without 
modification. We also developed a new paravirtualized network 
interface for the guest VMs to communicate with the data plane. 
The same interface was also used by the driver domain to for-
ward external network traffic.

Figure 2: Pairwise performance scalability results
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Then we evaluated Hyper-Switch using this prototype in Xen. 
The primary goal of this evaluation was to compare Hyper-
Switch with existing architectures that implement the virtual 
switch either entirely within the driver domain or entirely 
within the hypervisor. To achieve this, the end-to-end per-
formance under Hyper-Switch was compared to that under 
Xen’s default driver domain-based architecture and KVM’s 
hypervisor-based architecture. The evaluation showed that 
Hyper-Switch’s performance was superior in terms of absolute 
bandwidth as well as scalability as the number of VMs and 
traffic flows were varied. Figure 2 shows the results from the 
pairwise scalability experiments, where the number of VM pairs 
was scaled up. Here, on a 32-core AMD machine, Hyper-Switch 
achieved a peak net throughput of ~ 81 Gbps as compared to 
only ~ 31 Gbps and ~ 47 Gbps under Xen and KVM, respectively. 
Interested readers are referred to our USENIX publication that 
includes more results from the evaluation [7].

Conclusion
In this work, we designed Hyper-Switch, which combines the 
best of the existing last hop virtual switching architectures. It 
hosted the device drivers in a driver domain to isolate any faults 
and the last hop virtual switch in the hypervisor to perform 
efficient packet switching. In particular, the hypervisor imple-
mented just the fast, efficient data plane of a flow-based soft-
ware switch. The driver domain was needed only for handling 
external network traffic.

We also implemented several carefully designed optimizations 
that enabled efficient packet processing, better utilization of 
the available CPU resources, and higher concurrency. As a 
result, the Hyper-Switch enabled much improved and scalable 
network performance, while maintaining the robustness and 
fault tolerance that derives from the use of driver domains. We 
believe that these optimizations should be a part of any virtual 
switching solution that aims to deliver high performance. The 
Hyper-Switch architecture demonstrates that it is feasible to 
switch packets between VMs at high-speeds without sacrificing 
reliability.
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