
20    F eb rua ry 20 14  Vo l . 3 9, N o. 1 	 www.usenix.org

Logging Reports and Dashboards
D a v i d L a n g

David Lang is a Site Reliability
Engineer at Google. He
spent more than a decade at
Intuit working in the Security
Department for the Banking

Division. He was introduced to Linux in
1993 and has been making his living with
Linux since 1996. He is an Amateur Extra
Class Radio Operator and served on the
communications staff of the Civil Air Patrol
California Wing, where his duties included
managing the statewide digital wireless
network. He was awarded the 2012 Chuck
Yerkes award for his participation on various
open source mailing lists.
david@lang.hm

Once you have set up a system to gather your logs, are able to filter and
route the logs, and are alerted to the contents of the log messages [1],
the next step is to figure out how to mine the logs for useful informa-

tion to help you understand what your systems are doing and be proactive in
dealing with problems. In this article, I will present strategies you can use to
generate reports and dashboards from your logs as efficiently as possible.

Problems to Overcome
Before going into details on how to best generate reports, let’s first examine the problems
that you are going to be facing in a large environment.

High Log Volume Results in Reports that Take a Long Time to Generate
In an active network, generating anywhere from hundreds of GB to several TB worth of logs
per day is easy. Doing anything with this much data is expensive, both in CPU time and, most
noticeably, in the disk I/O required to read the data from disk in order to generate a report.
The volume of data that you are dealing with is large enough that you are not going to have a
machine with enough memory to cache all the logs for a day, let alone for reports covering a
longer time frame.

Ending up with a situation in which it takes longer to produce your report than the period the
report is supposed to cover is also easy. A system that requires 25 hours to produce a daily
report leaves only the weekend to catch up—that is, if your weekend traffic is light enough.
The stock response is that this is a “Big Data” problem; throw the data into a noSQL datas-
tore and then query that datastore. This doesn’t actually solve the problem, however, it just
pushes out the wall that you will be running in to a bit. There are easier and simpler ways to
deal with the volume issue.

Dashboards
A dashboard is a screen (usually in a browser) that is intended to give you an at-a-glance
summary of your system, usually with graphs, dials, and other graphical elements to present
the data. Dashboards frequently, but not always, have drill-down capabilities, allowing you
to get more information about a particular element being displayed. This is the type of thing
that managers love and put on large screens for everyone to see. Properly used, they are a
wonderful tool for providing an overview of the health of your system, but improperly imple-
mented, they can be a huge performance headache. And if the performance is bad enough,
dashboards can end up misleading people working on the systems, reporting the health of
your system sometime in the past.

Dashboards take a hard problem, resource issues, and make it even worse. Dashboards are
best thought of as predefined reports that are run repeatedly, by several people at once.

The most common problem is that these different people are not asking for the exact same
report. If an element of a dashboard is reporting how many hits your Web server has had over
the past five minutes and you have 20 people viewing the dashboard, you will produce 20
different sets of results because no two people have started the report generation at exactly

www.usenix.org	   F eb rua ry 20 14  Vo l . 3 9, N o. 1  21

SYSADMIN
Logging Reports and Dashboards

the same time (one person is looking at the data from 9:20:00–
9:25:00, the next is looking at 9:20:10–9:25:10, etc.). This can
become a catastrophic performance problem if the data that
needs to be retrieved to produce these reports (the working set)
is larger than the RAM that your reporting system has available
to cache the data, as each report will need to retrieve the raw
data from disk separately.

The next biggest problem with dashboards is that, because they
display their data graphically, putting a lot of information on a
page is easy, but each item is generated independently of every
other item. This means that if you have one dial that shows the
total number of hits to your Web servers, and another that shows
the number of dynamic pages being accessed, they will each go
through all your Web server logs separately for the reporting
period to get their results.

And, finally, dashboards frequently refresh faster than the
length of the time on which they are reporting. So a dashboard
reporting how many hits your Web servers have had over the
past five minutes, but refreshing once per minute, will count
each minute five times (once in each of five different refreshes
until the data has aged enough not to be relevant). Because dif-
ferent elements may show data covering different time frames,
this cannot be addressed by just changing the refresh time.

I have seen dashboards created that refresh every five minutes,
have 10 dials, graphs, or tables on them, with each item covering
logs for a 24-hour period and summarizing hundreds of mil-
lions of log events. Each item alone is a terrible resource hog, and
when combined into a single screen and refreshed together, they
can crush even large farms of servers. This is why the noSQL
datastore is not the full solution; it will let you throw more hard-
ware at the reporting problem, but inefficient algorithms can
outrun Moore’s Law no matter what your budget.

Ad Hoc vs. Pre-Planned Log Reporting
Ad hoc reports look for things that you did not think of ahead of
time, and pre-planned reports cover what you know you are going
to need, and can therefore plan for ahead of time. Most of the strat-
egies in this article can only be applied to pre-planned reports.

Ad Hoc Reports
Ad hoc reports are the sort of thing that members of your secu-
rity department are going to want to do frequently. They get a
report of a problem with a given account, and then want to look
at all the activity that happened on that account in the suspected
time frame. They will then want to do further investigation to see
what other activity happened from the IP addresses used to access
that account (frequently over a larger time frame), and then are
likely to want to look at activity on other accounts that those IP
addresses accessed. Like tugging on a piece of yarn in a sweater,
this activity can widen and unravel lots of interesting things.

Ad hoc reports also are commonly used during troubleshoot-
ing. You start off looking for all logs relevant to the place you see
a problem, look for logs related to that place on other systems,
and run similar reports for a time frame when you didn’t have a
problem to see what looks different.

Unfortunately, the only way to optimize ad hoc reports is to try
to segment the logs into categories that match the likely ad hoc
reports you will need to generate, partition them by time so that
you don’t have to look at logs outside of the required time frame,
and try to make searching through the logs as efficient as possible.

The simple approach to this is to split the logs by category (so
that your firewall logs are separate from your Web server logs,
for example), and then rotate the log files every minute. This
gives you a reasonable base to start from to grep through the logs
and find things you didn’t plan. Make sure you keep a copy of the
logs that isn’t split by category; although log events can and will
get reordered a bit as they are delivered, the order they arrive in
is the best approximation that you will have of the order in which
they are generated, and sometimes you need to see what hap-
pened across wildly different systems.

Your archive analysis farm is a good place to do this. Log every-
thing to one file and then have a series of filters in rsyslog match
a particular type of log event, usually by program name [2]. You
may want to have more sophisticated filters, especially ones that
use metadata that you’ve added, so that your production, DR, QA,
and development logs are separated from each other.

Ad hoc reports are where the Big Data approach to log storage
can be a wonderful win. If you can have your logs in some sort
of structured storage with full-text indexing (such as Splunk,
Elasticsearch, Hadoop, etc.), you can run queries against the logs
much more rapidly than you can with grep against flat files; how-
ever, these Big Data approaches tend to be very resource hungry
(and, therefore, expensive), and although they are absolutely
wonderful for ad hoc reports, using them for reports that you
know about ahead of time is far more expensive (and can end up
being significantly slower) than taking other approaches.

Pre-Planned Reports
The solution to the problems of generating pre-planned reports
efficiently is easy to articulate, but much harder to implement.

The Golden Rule of Reporting: Never process a log event more
than once.

This is an ideal to strive for, but you need to recognize that you
will never achieve this in practice. As a result, you need to look
carefully at the costs involved and work to minimize the overall
expense of generating the report.

Because you only want to examine a given log message once, the
Big Data approach to logs is not appropriate. If you use Splunk,

22    F eb rua ry 20 14  Vo l . 3 9, N o. 1 	 www.usenix.org

SYSADMIN
Logging Reports and Dashboards

Elasticsearch, or Hadoop to produce your reports, you end
up sending multiple queries for the same logs or types of logs,
retrieving them, and generating one report item per query. In
addition to the fact that your multiple queries all have to retrieve
the same data, you also have the problem that the logs that you
need to query to get one answer are going to be intermingled
with other logs that have nothing to do with the report you are
interested in, and the systems will need to read those logs to get
the logs that they need to respond to the query.

So instead of throwing all the data in one place and then query-
ing it, the idea is to split the data as early (and cheaply) as pos-
sible. This benefits you in a couple of ways.

1.	 The volume of logs is going to be large enough that no single
process can keep up, so you want to be able to split the work
across multiple processes to take advantage of the multiple
CPU cores in modern systems and, if needed, multiple systems.

2.	 The analysis that you will need to do on each type of log is going
to be very different, so it makes your report definitions much
simpler if a given report only needs to deal with one type of log.

After you have split the logs by category, you can have a process
go through each category. This process should not generate the
reports themselves, but should instead summarize the logs to
generate the data that the reports are based on. These summaries
can be fed back into the logging system so that all of your analysis
engines can benefit from one system summarizing the data.

If you do not have dashboards to support, running reports hourly
or daily is practical; however, dashboards are valuable enough
that it is worth complicating your hourly/daily reports to be able
to support your dashboards efficiently, too. To do this, frequently
create summaries of the logs you know you are going to be
reporting on. For example, if you have a set of Web servers that
are generating hundreds of millions of lines of logs per day, but
you produce per-minute summaries of these logs, your reports
only have to query and parse the summary data, not the raw data.
Because the data is per-minute, dashboard reports also stop
being different for different people; everyone who gets a report
in a given minute will see the same results. The summary data is
also much smaller, easily fitting in RAM, so you are not going to
have to do much disk I/O when generating the reports.

There are two fundamental approaches to producing summary
data: (1) storing the data, then summarizing it or (2) processing
the data in real time and summarizing it.

Store the Data, Then Summarize It
With this approach, you write the data someplace (as per-minute
flat files or in a Big Data system), then run the summary routines
against this storage.

If you use flat files, compressing them is a good idea. Using gzip,
I find that it’s faster to retrieve the compressed data off of disk
and then uncompress it than it is to retrieve the uncompressed
data off of disk. This is because (1) system RAM can hold a lot
more data in its disk cache when it’s compressed, so uncom-
pressing something that the system already has in RAM is more
likely than needing to retrieve the data from disk; and (2) CPU
power is relatively cheap, so any system that has lots of RAM
and a high performance disk subsystem usually has extra CPU
power available.

Using flat files, you can have your summary routine make one
pass through the data for a time frame and produce all the differ-
ent stats that you are interested in for that time frame.

If you use a Big Data system, you can schedule queries to perform
the various queries against the datastore to produce the results
that you need. This is far more expensive because each query
will be run independently from the others, requiring the data be
accessed multiple times, but if you are doing this every minute
against the last minute’s data, the data you are querying should
all be in RAM, so you at least avoid the expensive disk I/O. In
any case, this is far more efficient than having each report issue
independent queries against all the logs for the time frame the
report is interested in.

Note that if you are using a Big Data system, you are paying (in
license costs with Splunk, and in processing overhead and hard-
ware for all systems) for the volume of all the log events, even if
you end up only querying the summary data. In most cases you
are probably better off summarizing external to your Big Data
system and only putting the results into that system.

Process Data in Real-Time, Then Summarize It
Instead of storing the data and then querying it, you can have
rsyslog deliver the logs in real-time to your summary routines,
have them parse and count the logs as they arrive, and then dump
out the summary data periodically.

With this approach, the ability of rsyslog to normalize the logs
with mmnormalize should be looked at carefully. This module
lets you define log patterns and extract variables from those
patterns. Having rsyslog dump out the data in a nicely structured
and easily parsed format for your summary scripts to deal with,
and might end up being far more efficient than parsing the raw
formats in your summary scripts.

The best way to do this sort of summary is to have rsyslog run
your program and deliver the logs directly through stdin. The
rsyslog configuration for this looks like:

www.usenix.org	   F eb rua ry 20 14  Vo l . 3 9, N o. 1  23

SYSADMIN
Logging Reports and Dashboards

Module (load=”omprog”)

action(type=”omprog” binary=”/pathto/omprog.py

--parm1=\”value 1\” --parm2=value2” template=”RSYSLOG_

TraditionalFileFormat”)

Your program needs to exit when stdin gets closed, otherwise
you will end up with a copy of it running after rsyslog restarts.

Note that if you use the old config format, you cannot have any
spaces in the command line, so you will probably need to use an
external script to start your program. Because you only need to
do this on your analysis farms, you can be running a current ver-
sion that supports the new syntax.

If you write your own summary script, you must have some
method of having your script output its data on schedule. This
can be as “simple” as having a cron job send it a signal and having
a signal handler dump the data out and reset counters; however,
you don’t have to write this yourself. Simple Event Correlator
(SEC) works well for this task and includes the ability to do
things at specific times [3].

For example, the following SEC config file looks for Cisco ASA
http log entries; creates a log entry containing total HTTP
requests, number of servers accessed, and number of URLs
accessed; then creates one file containing all the URLs accessed
(and how many times they were accessed) and a second file for
the servers accessed:

On startup, zero the counters

type=Single

ptype=RegExp

pattern=(SEC_STARTUP|SEC_RESTART)

context=SEC_INTERNAL_EVENT

desc=Init counters with 0

action=eval %o %counters=()

type=Single

ptype=SubStr

pattern=%ASA-5-304001 \S Accessed URL ([^/])([^?^]+)

desc=gather most frequently accessed URLs

action=eval ($counter{urls}{%1%2}++;

$counter{httpconnections}++; $counter{servers}{%1}++)

output summary data and clear stats every minute

type=Calendar

time=* * * * *

desc=output summary data

context=!SEC_INTERNAL_EVENT

action=eval %a (scaler keys $counter{urls}); \

 eval %b (scaler keys $counter{servers}); \

 udgram /dev/log <30>summarydata: \

 CiscoLogCount=$counter{CiscoLogCount} \

 HttpConnectionCount=counter{httpconnections} \

 URLsAccessed=%a ServersAccessed=%b ;\

eval %o (\

 open(output,”>/var/log/urlcount”); \

 while (($key,$value) = each %counter{urls}) { \

 print “$key=$value\n”; \

 }; \

 close(output); \

 open(output,”>/var/log/servercount”); \

 while (($key,$value) = each %counter{servers}) { \

 print “$key=$value\n”; \

 }; \

 close(output);\

 %counters=(); \

)

Using the Summary Data
Dashboards
If you use this summary data to drive the dials and graphs for
your dashboards, you can cheaply create the dials and graphs, so
when a lot of people want to look at the dashboard, it won’t take
your system down.

Reports
You should create reports for people using this data. Instead of
creating reports structured around particular data sets, you
should create reports structured around the needs of the user of
that particular report, because aggregating the summary data,
making calculations using that data, and inserting the data into
a report is cheap.

Alerting
One obvious thing you can do is have a tool like SEC alert you if
these numbers cross a given threshold. There are limits to how
useful this is, however; numbers that might worry you at 2 a.m. on
Sunday because they are so high that they indicate something is
wrong or you are under attack, may be numbers that you would also
want to be alerted to in prime-time on Monday morning because
they are so low that they indicate that something is broken and you
aren’t serving your users. Such alerting is useful, but in practice
is limited to notifying you when you are exceeding capacity.

Aberrant Behavior Detection
The round-robin database tool (RRDtool) [4] not only makes
producing a wide range of time-based graphs to display the sum-
mary data you have generated easy, but it also has the interesting
ability to take the historic data that you feed it, predict a range
in which new data should fall, and flag when the new data is
outside of this range. This uses the Holt-Winters Time Series
Forecasting Algorithm to predict what the next value should

24    F eb rua ry 20 14  Vo l . 3 9, N o. 1 	 www.usenix.org

SYSADMIN
Logging Reports and Dashboards

be, and allows you to calculate confidence limits from this so
that you can do things like alert if the measured value is more
than two standard deviations away from what is expected. This
algorithm will detect repeated patterns in your data so that it not
only matches your daily usage pattern variation but, once it has
about 10 cycles worth of data, can detect the difference between
weekdays and weekends, for example, while still accounting for
a continuing increase in use over time. The details of how to do
this are out of scope for this article, but there is a good writeup at
http://cricket.sourceforge.net/aberrant/rrd_hw.htm.

Artificial Ignorance
In addition to counting how many times something happens,
another useful report to have is an “unknown log report” of the
type produced by the “artificial ignorance” approach described
by Marcus Ranum [5]. This consists of deliberately filtering out
log entries that you understand, then prioritizing the remaining
log entries based on what shows up the most:

1.	 Filter any log entries that you want to report on to a process to
generate the appropriate report for that type of log entry.

2.	 In what’s left, filter out any log entries that you know are not
important, but count them and report this count. If the number
of times that an insignificant event happens changes drasti-
cally, this may be significant.

3.	 Take what’s left and sort the logs based on their contents, and
produce a report that shows the most common logs.

A person can then look at this report and quickly spot strange
things that have happened.

Taken to the extreme, you can tune your artificial ignorance
report to the point that you have no logs in it at all. At that point,
anything that shows up in the report becomes significant.

Getting there is a lot of work, and you quickly reach the point of
diminishing returns. Even on a large network, surprisingly few
different log entries are produced. Large networks tend to have
a lot of the same thing on them, so once you identify what should
be done with a given log entry, you don’t care whether you have
two servers producing that log entry or 2000; either way, it’s
handled. A few days’ worth of effort filtering the log messages
probably can get you down to a report that shows you events that
have happened fewer than a dozen times in the first couple of
pages of the report. Also, the report probably will show you some
errors that are happening on your network that you were not
aware of and want to fix before going a lot further.

Running separate artificial ignorance reports against each cat-
egory of log messages is best. Dump all the messages that don’t
match your reporting rules into a file for that category and then
periodically run this data through a filter along the lines of:

cut -c 17- |sed -e s/”port [0-9]* “/”port PORT “/g \

 -e s/\[[0-9]*\]/”[PID]”/g -e s/”pid=[0-9]*”/pid=PID/g\

 |sort |uniq -c |sort -rn >other-logs.report

You may find that on your network, there are some other fields
that are in frequent log messages that make otherwise identical
messages look different, which is what the sed statement in this
filter chain is addressing.

Then take a look at the results. If you have a log message that
shows up a lot (or a lot of similar log messages that show up a lot),
add a rule to match them. Repeat until you can scan the entire
report in a short enough time that you no longer care; you don’t
need to drive it all the way to empty.

Summary
Producing dashboards and reports from a high volume of logs—
and doing so efficiently—is possible, but if you are not careful,
you easily could find yourself with a system that is orders of
magnitude larger than you would need for efficient generation,
and still running into performance problems.

Split up the work, and try to make it so that no log ever needs to
be examined in detail more than once, and try to limit the num-
ber of times it must go through a filter.

At this point, I have covered the basics of a full enterprise log-
ging system. In future articles I will go into the various topics
in more detail, which includes covering performance tuning of
different tools. If you have specific topics on which you would
like me to focus, please email Rik Farrow (rik@usenix.org) or
me and let us know.

References
[1] “Enterprise Logging,” ;login:, vol. 38, no. 4, August 2013:
https://www.usenix.org/publications/login/
august-2013-volume-38-number-4/enterprise-logging.

[2] “Log Filtering with Rsyslog,” ;login:, vol. 38, no. 5, Octo-
ber 2013: https://www.usenix.org/publications/login/
october-2013-volume-38-number-5/log-filtering-rsyslog.

[3] “Using SEC,” ;login:, vol. 38, no. 6, December
2013: https://www.usenix.org/publications/login/
december-2013-volume-38-number-6/using-sec.

[4] RRDtool: http://oss.oetiker.ch/rrdtool/.

[5] Artificial ignorance: http://www.ranum.com/security/
computer_security/papers/ai/.

mailto:rik@usenix.org

OCTOBER 68, 2014
BROOMFIELD, CO

The 11th USENIX Symposium on Operating Systems Design and Implementation seeks to present
innovative, exciting research in computer systems. OSDI brings together professionals from aca-
demic and industrial backgrounds in what has become a premier forum for discussing the design,
implementation, and implications of systems software.

Want to participate? Check out the Call for Papers!

www.usenix.org/osdi14/cfp

Sponsored by USENIX in cooperation with ACM SIGOPS

SAN DIEGO, CA • AUGUST 20–22, 2014

The USENIX Security Symposium brings together researchers, practitioners, system administrators,
system programmers, and others interested in the latest advances in the security of computer
systems and networks. The Symposium will be held August 20–22, 2014, in San Diego, CA, and
includes a technical program with refereed papers, invited talks, posters, panel discussions, and
Birds-of-a-Feather sessions. Workshops will precede the Symposium on August 18 and 19.

Interested in participating? Check out the Call for Papers!

www.usenix.org/sec14/cfp

