
26    AU G U S T 20 13  VO L . 3 8 N O. 4 	 www.usenix.org

Setting the Stage for a Software
Liability Discussion
M I C H A E L B . S C H E R

Mike Scher is VP and General
Counsel with the network se-
curity firm Nexum. An attorney
and security technologist by
trade, and an erstwhile legal

anthropologist, his focus is on risk mitigation,
from the legal to the social, and the techni-
cal to the procedural. Mike has been working
where the policy tires meet the implementa-
tion pavement since 1993.
mscher@nexuminc.com

Software liability isn’t what most people seem to think it is. It varies
by jurisdiction, market, and more. The current state of affairs—nasty
EULAs on the one hand, and dread of liability for ordinary bugs on

the other—is probably less than optimal. A patchwork of state, federal, and
“judge-made” law is inconsistent by its very nature, varying in complex ways
for each situation. In this article, I try to equip the reader with some key concepts
around product liability from the perspective of an attorney and security geek.

Among friends and coworkers (on the systems and security side of the industry), and among
clients and partners, there is renewed interest in questions of liability for software in its
many forms. A lot of the talk addresses controlling risk from a technical or legal perspective,
and some addresses how things “ought to be” from a technical or legal perspective. They are
frustrated and looking for change, but don’t think new laws or regulations will do anything
but make matters worse.

Many of them appear to have assumptions about the forms of liability operating today—
assumptions that are at odds with how the various areas of liability in fact operate. Ulti-
mately, it is critical that discussions about law build on an accurate sense of, generally, what
the law is and how it operates. Bad policies, like bad arguments, are built on false premises.
This article is an effort to help lay the conceptual groundwork for developers and sysadmins
to engage effectively in discussions on future policy and law regarding software liability,
security, safety, and responsibility. My take is US-centric, but the principles should stand one
in good stead broadly, and some references here may help others explore the state of the law
outside the US.

As with the 2006 ;login: article on negligence [1], “The content and positions contained in
this article should not be taken as legal advice—the discussion is simply far too general and
the subject matter too complex to safely use that way.” The purpose is to make readers more
conversant in the issues to apply that knowledge to policy discussions regarding their own
areas of expertise.

Negligence Quick Review
Some seem to think we are headed for a negligence standard when we discuss the possibility
of liability for flaws in software. A negligence standard is sort of the US default liability stan-
dard for anything not specifically and exclusively legislated, regulated, or otherwise under a
different standard through common law.

In short, under a negligence standard, one need do the “reasonable” thing. Applied to soft-
ware, “reasonable” has a lot to do with what a reasonable end-user should expect—which has
a lot to do with industry standard practices, but (see again [1]) sometimes industry standards
themselves aren’t (legally speaking) “reasonable.” Negligence is always “there,” but licens-
ing agreements, including shrink-wrap style agreements, can disclaim a lot of that liability,
for almost anything short of reckless or willfully harmful conduct. Because shrink-wrap
licenses vary in the extent to which they are enforceable (by content and by jurisdiction),
only customers in a strong negotiation position relative to the licensor will consistently
have the ability to shift risk back onto the licensor/reseller. The rest of us end-users might

www.usenix.org	   AU G U S T 20 13  VO L . 3 8 N O. 4  27

SECURITY
Setting the Stage for a Software Liability Discussion

just have to take it as given or drive on. Due to the economics of
combining contracts with torts litigation, practical liability from
provider to end-user can disappear in a puff of EULA.

Warranties
With regard to negligence, the industry handles risk today
through EULAs applying to licensed software. EULAs disclaim
virtually all errors, as well as many of the warranties stemming
from states’ common law and statutes governing the sale of
goods, such as the broadly adopted Uniform Commercial Code
(UCC) Article 2. Most software isn’t “sold” as a “good”—rather, it
is licensed. Thus, as some scholars and practitioners will rapidly
point out, UCC Article 2 doesn’t even apply to many software
transactions [2]. Readers may recall that the 1990s saw the
controversial Uniform Computer Information Transactions
Act (UCITA), which started as an outgrowth of UCC Article 2
warranties for goods. It proposed broad warranties for licensed
software, but allowed virtually all warranties to be disclaimed.
Only two states have adopted UCITA in any form [3, 4]. Some
courts and a few states have declared all software to be a good
subject to UCC Article 2, and sometimes software is delivered
incorporated in a good that is subject to warranties. Still, EULAs
and similar agreements disclaim many warranties, open-
ing questions regarding general consumer protection law and
contracts of adhesion, the answers to which, of course, vary by
jurisdiction; however, warranty actions are not how most serious
harms caused by product failure are handled.

Product Liability: Software and “the Market”
We’re used to using free and commercial software to perform
important functions—yet, when introduced, such software may
be rife with functional problems that can corrupt data, cause
halting, open a system to compromise, or bring about other sig-
nificant issues. The discovery of security issues in software is a
regular occurrence across most popular packages.

The market accepts file corruption and routine rebooting in
early edition software, including some operating systems, sug-
gesting that the marketplace has a period of adoption elastic-
ity in which the benefit of inexpensive adoption outweighs
the issues. At some point, in theory, mounting competition
and pressure for stability and security influence the package
producer. Even as we seem to expect the market to perform that
function, the notion that critical-use software could fail as badly
as the latest app we dropped on our smartphone is an alarming
one—especially since consumer market-pressure correction
comes after adoption. Still, we’re not crazy for thinking people
actively making choices can influence quality. We as a society
click “Accept” to low standards for many reasons, some histori-
cal, some market structural, and some as part of the cost of doing
business and keeping software prices low.

That last sounds like almost any competitive commercial goods-
producing sphere: we want prices as low as possible, and are
willing to accept some drop in quality in exchange, but we still
want those goods to be without significant defect. The discus-
sion around software liability hinges on that point: what form
will liability take and where is the line that will permit bounti-
ful software development while steering us away from a caveat
emptor marketplace? We’ve discussed negligence for acts and
omissions, and how warranty may apply to goods. The US (and
much of the world) handles product liability for harms suffered
from “defective goods” differently from other forms of liability,
and quite differently from the way we handle most licensed
software today.

Strict Liability and Products
Ordinary negligence can be a case-by-case, time-consuming,
and not-always-predictable process, to say the least. Modern
product liability ultimately posits we shouldn’t have court
cases looking at the micro-facts of each $100 buyer’s case, that
a buyer should be able to have a base-level confidence that
products released into the marketplace are without “defect” to
the extent of the product’s “intended use.” Due diligence and
proximate causation are two key issues in negligence—did
defendant’s behavior fall below a reasonable standard and, if so,
did that cause a foreseeable harm in a manner to which liability
attaches?

In product liability, the causation question is often simpler. The
complicated question is whether the root problem is a “defect.”
Product liability is inherently a strict liability regime, not a “due
diligence” one. Once there is a harm, and a defect leading to the
harm is identified, the product maker (and others in the chain
of sale) are generally held liable. The definition of “defect” itself
subsumes many issues similar to negligence. Because the defect
affects many in similar fashion, and because each affected
individual’s contributory negligence need not be weighed on a
case-by-case basis, product liability cases are generally brought
as class actions (thus avoiding spending courts’ time for each
$100 case, permitting class-wide disposition of the matter, and
allowing the company and those affected to move on).

Let’s take a quick look at how the Restatement of the Law Third,
Torts: Products Liability talks about the key term “defect” in
goods. There are three forms of defect, broadly defined [5].

First, manufacturing defects, “when the product departs from its
intended design, even if all possible care was exercised.” Note
that negligence isn’t the issue with this form of defect; it focuses
on the market and the good, not the maker’s degree of care. It is
possible to have a product be defective and its maker liable for
harm even if all reasonable care was exercised. As a matter of public
policy, one could say the sale of such a good is inherently unreason-
able, but again, the negligence standard simply does not apply [6].

28    AU G U S T 20 13  VO L . 3 8 N O. 4 	 www.usenix.org

SECURITY
Setting the Stage for a Software Liability Discussion

Second are design defects, “when the foreseeable risks of harm
posed by the product could have been reduced or avoided by the
adoption of a reasonable alternative design, and failure to use
the alternative design renders the product not reasonably safe.”
Here the focus is on both the maker and the market. Liability
for failing to use an alternative design hinges to a degree on the
reasonable nature of the alternative design, and in that aspect is
reminiscent of negligence questions, only to the extent of exam-
ining the availability and viability of alternatives.

Third are inadequate instructions or warnings defects, “when
the foreseeable risks of harm posed by the product could have
been reduced or avoided by reasonable instructions or warnings,
and their omission renders the product not reasonably safe.”
We’ve all seen what we consider ridiculous instructions (e.g.,
“do not eat” on silica packets). Here the focus is on the maker
interacting with the intended market—which market, from the
news, will seem to many readers to have an ever-decreasing
mentality. Many of the cases making news as if of the third type
are actually of the second. The press tends to repeat these PR
pitches uncritically. What, the press carry water for a PR firm?
How unreasonable!

Software Liability Generally, Today
Depending on deal size, at the corporation level, an end-user
company can push to have UCC Article 2 warranties explicitly
apply, and go well beyond that, assuming the software company
is eager for the business. That’s a contractual engagement where
sophisticated parties each with some degree of negotiating
power negotiate a deal on price and license/liability terms.

Consumer-facing software is currently subject to a patchwork
of liability standards, even at the federal level, with a negligence
standard applying only to the extent EULAs can’t disclaim it,
which means most software won’t see a negligence suit in some
jurisdictions (but again, reckless or other egregious conduct
generally can’t be disclaimed). Warranties are a little harder to
disclaim, again varying by jurisdiction and case specifics, but
EULA language disclaims them broadly anyway.

When UCITA was proposed, a few states drafted “anti-UCITA”
statutes that declared software a “good” subject to UCC Article
2, even if licensed, and some courts have also held software
should be treated as a good. When software is licensed and
treated not as a good, UCC Article 2 warranties don’t apply
(although when “sold” rather than licensed, it is a “good” in most
jurisdictions). Even if and where UCC warranties for sold goods
apply to licensed software, they may be subject to disclaimer in
EULAs, subject to courts’ interpretation of contracts of adhesion
in the context of EULAs [7].

For example, some software licenses disclaim just about every-
thing—even violation of intellectual property rights, which could
see the end-user sued for patent violation and left to deal with it.

Such EULAs essentially say, “this does more or less what we say
it does; otherwise, use at own risk. Pay here.” In some jurisdic-
tions, software liability is today essentially under a contracts
regime, subject to some consumer protection law related to
contracts made between parties in unequal bargaining posi-
tions. Thus, with negligence and warranty generally disclaimed,
subject perhaps to a complicated court battle, some consumers
are left to pay for “your problem—deal with it” contract terms
on software because they are in a significantly unequal bar-
gaining position with the software producer or seller. Adding
further complication, some jurisdictions treat such contracts as
unenforceable.

Software liability can thus take the form of liability in negli-
gence, in products liability, in contract (license terms providing
a broad range of risk-shifting), and consumer or inter-business
contracts for goods (warranty terms, explicit and implied). One
almost needs to apply multivariable differential equations to
solve for any particular jurisdiction along three major axes, each
containing subordinate axes [8, 9]:

1.	 Liability regime: negligence, products liability, contract, warranty

2.	 Sold as: license or good

3.	 Shrink/clickwraps: enforceable or not, and to what degree

All that, without even looking at the complexities of other areas
of federal and constitutional law, let alone criminal law.

The Future Isn’t What It Used to Be
The complexity in liability for software calls out for a consid-
ered standard, even if it is one with broad flexibility. Courts are
slowly, but not broadly, rejecting the ability to disclaim warranty
in consumer software. But court-considered law is going to be
inconsistent by the nature of the market and jurisdiction.

If we push toward a model for software liability, what could it
be? If modeled on “goods,” would that just be UCC-type warranty
plus negligence law, and how much effect should a shrink/click-
wrap have? Should we select a products strict liability regime? Is
it easier for the industry to measure its “reasonable” behavior or
to determine whether a product has “defects” (under the defini-
tions above)?

When software is incorporated in hardware, the combination
is sold “as a good” subject to UCC Article 2, with failure due to
“defect” likely subject to product liability law. The reasons for
that liability include that courts are presented with a prod-
uct that failed, not an app (“plaintiff’s microwave burst into
flames”), even when software failure is the root cause. As a
matter of public policy, it makes sense because the end-user is
several steps removed from the software maker, and thus can’t
measure risk (the product manufacturer does that) or evaluate
license terms (which, between a manufacturer and software
supplier, don’t look like what you and I normally get in EULAs).

www.usenix.org	   AU G U S T 20 13  VO L . 3 8 N O. 4  29

SECURITY
Setting the Stage for a Software Liability Discussion

Pressure to control risk is thus between supplier and manufac-
turer. So governed, a market risk-allocation still takes place,
backed by Errors and Omissions/cyber liability insurance on the
one hand, and products liability insurance on the other.

Some of my colleagues posit product liability for software will harm
the industry. Yet the dizzying matrix of liability on software
hasn’t stymied software development in the US, from FOSS to
mega-commercial. Software makers for products aren’t running
scared despite contracts between them and the product maker
shifting risk onto them, from patent infringement to bodily harm.

To those who create software, a key concern is that the public
does not understand the complexity of software, the mathemati-
cal impossibility of proving a system, the problems of design
versus manufacture. There is concern that the vibrant and
effective free software movement will be constrained. After all,
haven’t we seen the industry forced to improve in a market with
viable, quality competition? These are valid concerns and any
solution should distinguish among the various forms of license
and market model (“sold,” licensed for fee, FOSS). All complex
systems are subject to subtle defect. Perfection in any form is
impossible, its approximation expensive, and we’re back to a cost
versus quality discussion. Markets are supposed to be good at
handling that kind of balance, though they tend to do so after
harms appear.

To those outside the industry, it can seem like software makers
want a “have their cake and eat it too” liability regime where they
can both claim their software is perfect (e.g., “unbreakable”) and
be virtually without liability should it break, causing harm. That
is also a valid concern and sits at the crossroads of a broad range
of consumer-protection law.

Should the industry be satisfied with the current patchwork lia-
bility? Certainly, end-users of software incorporated in antilock
braking systems probably would prefer the system not require
a critical patch to prevent catastrophe 3-4 times a year (I am
being generous). Such issues as they relate to the end-user are
governed by products liability today. Could a reasonable dividing
line for the form liability takes be the incorporation of software
in a hard good sold as product? Perhaps a “shipped-with” divider
between sold-as-good and “licensed”?

Could a manufacturer, rather than selling a good that incorpo-
rates software it has licensed, force the end-user to download
and “relicense” the braking and other software on first “key-up”?
Imagine starting up a new car and clicking through 20 EULAs
(or one egregious one), waiving—subject to each state’s consumer
protection law, subject to each circuit’s take on licensing vs.
purchasing—all disclaimable liability for anything but mechani-
cal failure. Those who have purchased provider-tied, app-laden
smartphones have probably had a whiff of this experience.

These are the discussions we should be having. I hope this surface
treatment of negligence, warranty, and product liability has helped
arm you with terms and tools to better shape discussion of what
“ought” to be, and to understand the complexity of how it “is” today.

References
[1] Michael Scher, “On Doing ‘Being Reasonable’,” ;login:,
vol. 31, no. 6, December 2006.

[2] For a brief discussion of software and UCC Article 2, see
http://technologylicensinglitigation.com/applying-the-ucc
-to-software-license-agreements/.

[3] For an excellent history, discussion, and description of
UCITA, see http://www.jamesshuggins.com/h/tek1/ucita.htm.

[4] For a contemporaneous response to the UCC 2B proposal,
see http://www.badsoftware.com/uccsqa.htm.

[5] American Law Institute, summary of Restatement of the
Law Third, Torts: Products Liability: http://www.ali.org/
index.cfm?fuseaction=publications.ppage&node_id=54.

[6] See, for humorous effect, http://snltranscripts.jt.org/
76/76jconsumerprobe.phtml.

[7] Complex issues regarding licenses, EULAs, contracts
of adhesion, and unconscionability are at play. A good sum-
mary of the development of cases through 2008 can be found
at http://www.bicklaw.com/Publications/Unconscionable
TermsandE-contracts.htm, and a discussion of click-
through/browse-through terms can be found at https://
ilt.eff.org/index.php/Contracts:_Click_Wrap_Licenses.

[8] In 1999, Clark Turner and Debra Richardson wrote
“Software Defect Classes and No-Fault Liability,” presenting
an early discussion of the complexity of applying products-
style “defect” and liability to software: http://www.users
.csc.calpoly.edu/~csturner/fulltechreport.pdf.̀

[9] For a similar discussion of the complexity of determin-
ing such issues, see Lloyd Rich, “If You Use A Shrinkwrap
License It May Not Be Enforceable”: http://corporate.findlaw
.com/business-operations/if-you-use-a-shrinkwrap-license
-it-may-not-be-enforceable-mass.html.

Other Resources:
Legal Information Institute, Products Liability: http://
www.law.cornell.edu/wex/Products_liability.

HG.org, Legal Resources, Product Liability Law: http://
www.hg.org/product-liability.html.

Macrothink Institute, “A Managerial Guide to Products
Liability”: http://www.macrothink.org/journal/index.php/
ijld/article/view/1773/1458.

