
20    A P R I L 20 13  VO L .  3 8 N O.  2 	 www.usenix.org

FILESYSTEMSImproving the Performance of fsck in FreeBSD
M A R S H A L L  K I R K  M C K U S I C K

W hile listening to the presentation of the first paper at FAST ’13, 
‘‘ffsck: The Fast File System Checker’’ [1], I immediately wondered 
whether I could implement some of the ideas in FreeBSD. The 

researchers’ goal was to reorganize the Linux ext3 filesystem and to rewrite its 
filesystem checker so that a complete check of the filesystem could be done 
more quickly. With the addition of a couple of hundred lines of code, I was able to 
implement both the improvements to fsck and the layout policy in the FreeBSD 
filesystem (FFS).

Although the thrust of the paper was to make changes to the layout of the filesystem to enable 
fsck to run more quickly, some of the changes resulted in a reduction in performance of the 
filesystem. As I am unwilling to accept a reduction in filesystem performance solely for 
the purpose of speeding up fsck, I chose to consider only on the subset of their changes that 
improve both.

Implementation
The paper describes changes that the researchers made to the on-disk layout of the filesystem. 
Getting folks to change to a different filesystem format that is incompatible with the existing 
filesystem format is difficult. So, in my implementation, I was not willing to change the file-
system format beyond using one of the spare fields in the superblock to tune the layout policy. 
Even with these limitations, I was able to get an impressive improvement in fsck’s running 
time and some small improvements in filesystem performance.

In FFS (the Fast FileSystem), the disk space is broken up into groups of contiguous blocks 
called cylinder groups similar to the ext3 block groups. The first block of each cylinder group 
contains the cylinder group descriptor that includes a map showing the free and allocated 
blocks and a map showing the free and allocated inodes in that cylinder group. Following the 
cylinder group descriptor are blocks that contain the metadata (inodes) for the files in that 
cylinder group. The organization of an inode is shown in Figure 1. The remainder of the cyl-
inder group is made up of blocks that contain the indirect blocks and data blocks for the files 
and directories contained in the filesystem. An inode may reference blocks in one or more 
cylinder groups in the filesystem, although the policy is that small files have their blocks 
allocated in the same cylinder group in which the inode resides. For details, see Chapter 8  
of McKusick & Neville-Neil [2].

The key idea in the paper [1] is to reserve a small area in each cylinder group immediately 
following the inode blocks for the use of metadata, specifically indirect blocks and directory 
contents. It requires that metadata be allocated in this area and does not allow data blocks to 
be allocated in this area. Thus, the paper has a long discussion of how to size this area. If it 
is improperly sized, the filesystem will report as being full when it in fact still has plenty of 
available space since it reports a filesystem full error when either the metadata area or the 
non-metadata area fills up.

The FFS separates the allocation of data blocks and inodes into two distinct layers: policy and 
implementation. The policy layer is responsible for picking what it views as the ideal place to 
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allocate the inode or the data block. For example, when asked to 
allocate a block for a file, the policy layer will usually ask for the 
block that immediately follows the previously allocated block.

The implementation layer is responsible for managing the 
allocation bitmaps and ensuring that resources do not get double 
allocated. Thus, the policy layer does not have to worry about 
requesting an already allocated block. If the implementation 
layer finds that a requested block is already allocated, it simply 
scans through the map to find the closest available free block. 
The result of this separation is that once the implementation 
layer is working properly, filesystem designers are free to try out 
whatever hare-brained policy ideas that they want without fear 
of corrupting the filesystem. In the case of FFS, the implementa-
tion layer was written and debugged in 1982 and has not been 
changed since. Further refinements to the filesystem have been 
done at the policy layer.

Following these design principles, I chose not to change the 
filesystem layout or the implementation layer. Instead I chose to 
implement it entirely as a new policy. Specifically, the new policy 
is to hold about the first 4% of the data blocks in each cylinder 
group for use of metadata. The policy routines preferentially 
place metadata in the metadata area and everything else in the 
blocks that follow the metadata area. In my implementation, the 
size of the metadata area does not matter as it is just used as a 
hint by the policy routines. If the metadata area fills up, then the 
metadata just gets put in the regular blocks area and vice versa. 

And this decision happens on a cylinder group by cylinder group 
basis (e.g., some cylinder groups can overflow their metadata 
area whereas others do not overflow it). For filesystem perfor-
mance, having the metadata in the same cylinder group as its 
inode is usually better than pushing it to the metadata area of 
another cylinder group as is done by the design in the paper.

Another area where I chose to take a different approach than 
the paper is in the allocation policy for the first indirect block of 
the file. The BSD fast filesystem tries to place the first (single) 
indirect block inline with the file data (e.g., it tries to lay out 
the first 12 direct blocks contiguously followed immediately 
by the indirect block followed immediately by the data blocks 
referenced from the indirect block). One of the performance 
slowdowns in the paper occurs for files that spill into only the 
first part of their first indirect block. The slowdown comes from 
moving this first indirect block to the metadata area, thus caus-
ing two extra seeks when reading it. To avoid this slowdown, I do 
not change the layout of the first indirect (leaving it inline). Only 
the second and third level indirects along with the indirects 
that they reference are moved to the metadata area. The nearly 
contiguous allocation of this metadata close to the inode that ref-
erences it noticeably improves the random access time to the file 
as well as speeding up the running time of fsck. Also, as noted in 
the paper, the disk track cache is frequently filled with much of a 
file’s metadata when the second level indirect block is read, thus 
often speeding up even the sequential reading time for the file; 
however, in limited testing I did not see statistically significant 
differences in sequential reading times.

Putting the contents of directories in the metadata area gives a 
similar speedup to directory tree traversal because the data is 
a short seek away from where the directory inode was read and 
may already be in the disk’s track cache from other directory 
reads done in its cylinder group.

The final observation that I plucked from the paper specifically 
for speeding up fsck is to save an in-memory copy of the cylinder 
groups during pass1 so as not to need to re-read them in pass5. 
This nearly doubles the memory footprint of fsck, so if memory 
runs short (e.g., its mallocs begin to fail) this cache is released as 
needed to make room for other allocations.

Results
I have been testing on an Intel Quad-core CPU running at 2.83 
GHz with 2 Gb of memory and a 2 Tb Western Digital 7200 rpm 
testing disk running FreeBSD 8.3-STABLE (Subversion revision 
r246915M). Filesystems are created with their default settings: 
16 K blocks, 2 K fragments, soft updates, and 4% of the data 
blocks held for metadata. For these tests, the filesystem is 75% 
full mostly populated with big files (to exaggerate the metadata 
effects). In each case a new filesystem was created and all the 
data copied into it so that the new layout could have maximal 
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Figure 1. The structure of an inode
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effect. There are few files and hence little directory information, 
so the benefit to the running time for directories is minimal in 
these tests. I am currently running tests on a more convention-
ally populated filesystem.

Fsck times are also better as the filesystem has not been aged; 
however, aging effects in the FFS filesystem tend to be a lot 
less noticeable than in others because of its use of dynamic 
block reallocation. Notably, the Harvard folks found that I/O 
performance dropped off by only about 10% after 10 months of 
simulated aging [3]. Also, fsck times are low because of the small 
number of files in the filesystem and hence the smaller number 
of inodes needing to be inspected. Finally, a technique similar to 
the metadata compression discussion in the Ma, et al paper has 
been in use in fsck for the directory metadata since 1988, which 
cuts down on running time.

Executive summary on running time of fsck:

u	� Baseline before any changes: 284 seconds (4 min 44 sec)

u	� Storing second and third level metadata (and their referenced 
indirect blocks) but not first indirect block in the metadata 
area: 135 seconds (2 min 15 sec)

u	� Adding directory data blocks to metadata area: 134 seconds  
(2 min 14 sec)

u	� Caching cylinder group blocks in pass1 to avoid the need to  
read them in pass5: 84 seconds (1 min 24 sec)

In Appendix 1 [4] are the summary statistics for each run. I/O 
listed as ‘‘Double Level Indirect’’ includes all double-indirect 
blocks referenced from inodes and all the single level indirect 
blocks below them. Similarly, ‘‘Triple Level Indirect’’ includes 
all triple-indirect blocks referenced from inodes and all the 
single and double level indirect blocks below them. The key 
observation is that whereas the number of I/Os of each type of 
data remain similar from run to run, the percentage of time for 
reading the metadata has dropped dramatically.

I ran just a few tests on the speed with which data could be read 
from or written to files. Random read times improved a bit. The 
remaining tests were not statistically significantly different. 
More thorough tests would need to be run to get a reasonable 
idea of whether it makes any difference; first results imply no 
degradation and some hints at improvement.

Conclusions
This work has once again shown the power of separating the 
filesystem layout policy routines from the implementation rou-
tines. I was so excited by the possibilities presented by the FAST 
’13 paper that I skipped lunch after hearing the presentation so 
I could try implementing it in FFS. By the time the 90 minute 
lunch break was over, I had fully written the 100 lines of changes 
(half of which were comments) to the block layout policy routine 

to implement the reserved metadata area. And I had no fears of 
bringing it up on my primary server to test it out because I knew 
that at worst I would get some badly laid out files; certainly I was 
not running the risk of corrupting my filesystems.

By retaining the same on-disk format, I did not need to make any 
changes to fsck. The stock fsck just ran faster because of the new 
layout of metadata. I did need to make about 100 lines of changes 
to fsck to add the caching of cylinder groups between pass1 
and pass5; however, that was a trivial change and one that will 
provide equal improvement whether or not the new filesystem 
layout is in use. The vast majority of my time has been spent 
measuring the effects of the changes and writing this paper. 
Having spent time writing or tuning fsck for the past 30 years, I 
never would have guessed that so much improvement in running 
time could come from fsck for so little effort.

The lesson to be learned is that separating policy from imple-
mentation is an important design principle when architecting 
software systems, especially when they are mission-critical 
systems. The policy layer allows new ideas to be implemented 
and tested quickly. Once validated, those ideas can be deployed 
without danger of compromising the integrity of the system.

I commend the authors of the paper for their work. Unfortu-
nately the filesystem on which they worked is not separated into 
policy and implementation layers, so they had to make several 
thousand lines of changes in areas where bugs would compro-
mise the filesystem integrity. The monolithic architecture led to 
a great deal more effort on their part than would otherwise have 
been necessary. Finally, the scope of the change and the possibil-
ity of destabilizing a production filesystem will make it far more 
difficult for them to get their changes accepted back into the 
mainline code base.
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