
20    A P R I L 20 13  VO L . 3 8 N O. 2 	 www.usenix.org

FILESYSTEMSImproving the Performance of fsck in FreeBSD
M A R S H A L L K I R K M C K U S I C K

W hile listening to the presentation of the first paper at FAST ’13,
‘‘ffsck: The Fast File System Checker’’ [1], I immediately wondered
whether I could implement some of the ideas in FreeBSD. The

researchers’ goal was to reorganize the Linux ext3 filesystem and to rewrite its
filesystem checker so that a complete check of the filesystem could be done
more quickly. With the addition of a couple of hundred lines of code, I was able to
implement both the improvements to fsck and the layout policy in the FreeBSD
filesystem (FFS).

Although the thrust of the paper was to make changes to the layout of the filesystem to enable
fsck to run more quickly, some of the changes resulted in a reduction in performance of the
filesystem. As I am unwilling to accept a reduction in filesystem performance solely for
the purpose of speeding up fsck, I chose to consider only on the subset of their changes that
improve both.

Implementation
The paper describes changes that the researchers made to the on-disk layout of the filesystem.
Getting folks to change to a different filesystem format that is incompatible with the existing
filesystem format is difficult. So, in my implementation, I was not willing to change the file-
system format beyond using one of the spare fields in the superblock to tune the layout policy.
Even with these limitations, I was able to get an impressive improvement in fsck’s running
time and some small improvements in filesystem performance.

In FFS (the Fast FileSystem), the disk space is broken up into groups of contiguous blocks
called cylinder groups similar to the ext3 block groups. The first block of each cylinder group
contains the cylinder group descriptor that includes a map showing the free and allocated
blocks and a map showing the free and allocated inodes in that cylinder group. Following the
cylinder group descriptor are blocks that contain the metadata (inodes) for the files in that
cylinder group. The organization of an inode is shown in Figure 1. The remainder of the cyl-
inder group is made up of blocks that contain the indirect blocks and data blocks for the files
and directories contained in the filesystem. An inode may reference blocks in one or more
cylinder groups in the filesystem, although the policy is that small files have their blocks
allocated in the same cylinder group in which the inode resides. For details, see Chapter 8
of McKusick & Neville-Neil [2].

The key idea in the paper [1] is to reserve a small area in each cylinder group immediately
following the inode blocks for the use of metadata, specifically indirect blocks and directory
contents. It requires that metadata be allocated in this area and does not allow data blocks to
be allocated in this area. Thus, the paper has a long discussion of how to size this area. If it
is improperly sized, the filesystem will report as being full when it in fact still has plenty of
available space since it reports a filesystem full error when either the metadata area or the
non-metadata area fills up.

The FFS separates the allocation of data blocks and inodes into two distinct layers: policy and
implementation. The policy layer is responsible for picking what it views as the ideal place to

Dr. Marshall Kirk McKusick
writes books and articles,
teaches classes on UNIX-
and BSD-related subjects,
and provides expert-witness

testimony on software patent, trade secret,
and copyright issues, particularly those
related to operating systems and filesystems.
His work with Unix and BSD development
spans over four decades. It begins with his
first paper on the implementation of Berkeley
Pascal in 1979, goes on to his pioneering
work in the ‘80s on the BSD Fast File System,
the BSD virtual memory system, the final
release of 4.4BSD-Lite from the UC Berkeley
Computer Systems Research Group, and
carries on with his work on FreeBSD.
mckusick@mckusick.com

www.usenix.org	   A P R I L 20 13  VO L . 3 8 N O. 2  21

FILESYSTEMS FILESYSTEMS
Improving the Performance of fsck in FreeBSD

allocate the inode or the data block. For example, when asked to
allocate a block for a file, the policy layer will usually ask for the
block that immediately follows the previously allocated block.

The implementation layer is responsible for managing the
allocation bitmaps and ensuring that resources do not get double
allocated. Thus, the policy layer does not have to worry about
requesting an already allocated block. If the implementation
layer finds that a requested block is already allocated, it simply
scans through the map to find the closest available free block.
The result of this separation is that once the implementation
layer is working properly, filesystem designers are free to try out
whatever hare-brained policy ideas that they want without fear
of corrupting the filesystem. In the case of FFS, the implementa-
tion layer was written and debugged in 1982 and has not been
changed since. Further refinements to the filesystem have been
done at the policy layer.

Following these design principles, I chose not to change the
filesystem layout or the implementation layer. Instead I chose to
implement it entirely as a new policy. Specifically, the new policy
is to hold about the first 4% of the data blocks in each cylinder
group for use of metadata. The policy routines preferentially
place metadata in the metadata area and everything else in the
blocks that follow the metadata area. In my implementation, the
size of the metadata area does not matter as it is just used as a
hint by the policy routines. If the metadata area fills up, then the
metadata just gets put in the regular blocks area and vice versa.

And this decision happens on a cylinder group by cylinder group
basis (e.g., some cylinder groups can overflow their metadata
area whereas others do not overflow it). For filesystem perfor-
mance, having the metadata in the same cylinder group as its
inode is usually better than pushing it to the metadata area of
another cylinder group as is done by the design in the paper.

Another area where I chose to take a different approach than
the paper is in the allocation policy for the first indirect block of
the file. The BSD fast filesystem tries to place the first (single)
indirect block inline with the file data (e.g., it tries to lay out
the first 12 direct blocks contiguously followed immediately
by the indirect block followed immediately by the data blocks
referenced from the indirect block). One of the performance
slowdowns in the paper occurs for files that spill into only the
first part of their first indirect block. The slowdown comes from
moving this first indirect block to the metadata area, thus caus-
ing two extra seeks when reading it. To avoid this slowdown, I do
not change the layout of the first indirect (leaving it inline). Only
the second and third level indirects along with the indirects
that they reference are moved to the metadata area. The nearly
contiguous allocation of this metadata close to the inode that ref-
erences it noticeably improves the random access time to the file
as well as speeding up the running time of fsck. Also, as noted in
the paper, the disk track cache is frequently filled with much of a
file’s metadata when the second level indirect block is read, thus
often speeding up even the sequential reading time for the file;
however, in limited testing I did not see statistically significant
differences in sequential reading times.

Putting the contents of directories in the metadata area gives a
similar speedup to directory tree traversal because the data is
a short seek away from where the directory inode was read and
may already be in the disk’s track cache from other directory
reads done in its cylinder group.

The final observation that I plucked from the paper specifically
for speeding up fsck is to save an in-memory copy of the cylinder
groups during pass1 so as not to need to re-read them in pass5.
This nearly doubles the memory footprint of fsck, so if memory
runs short (e.g., its mallocs begin to fail) this cache is released as
needed to make room for other allocations.

Results
I have been testing on an Intel Quad-core CPU running at 2.83
GHz with 2 Gb of memory and a 2 Tb Western Digital 7200 rpm
testing disk running FreeBSD 8.3-STABLE (Subversion revision
r246915M). Filesystems are created with their default settings:
16 K blocks, 2 K fragments, soft updates, and 4% of the data
blocks held for metadata. For these tests, the filesystem is 75%
full mostly populated with big files (to exaggerate the metadata
effects). In each case a new filesystem was created and all the
data copied into it so that the new layout could have maximal

mode

owners (2)

timestamps (4)

size

direct blocks

single indirect

double indirect

triple indirect

block count

reference count

flags (2)

generation number

blocksize

extended attr. size

extended
attribute
blocks

data

data

data
•
•
•
data

data

data

•
•
•

•
•
• •

•
•

•
•
•

data

data

data

data

•
•
•

data

data

•
•
• •

•
•

•
•
•

data

data

data

data

•
•
•

data

data

•
•
•
•

•
•
•

Figure 1. The structure of an inode

22    A P R I L 20 13  VO L . 3 8 N O. 2 	 www.usenix.org

FILESYSTEMS
Improving the Performance of fsck in FreeBSD

effect. There are few files and hence little directory information,
so the benefit to the running time for directories is minimal in
these tests. I am currently running tests on a more convention-
ally populated filesystem.

Fsck times are also better as the filesystem has not been aged;
however, aging effects in the FFS filesystem tend to be a lot
less noticeable than in others because of its use of dynamic
block reallocation. Notably, the Harvard folks found that I/O
performance dropped off by only about 10% after 10 months of
simulated aging [3]. Also, fsck times are low because of the small
number of files in the filesystem and hence the smaller number
of inodes needing to be inspected. Finally, a technique similar to
the metadata compression discussion in the Ma, et al paper has
been in use in fsck for the directory metadata since 1988, which
cuts down on running time.

Executive summary on running time of fsck:

u	� Baseline before any changes: 284 seconds (4 min 44 sec)

u	� Storing second and third level metadata (and their referenced
indirect blocks) but not first indirect block in the metadata
area: 135 seconds (2 min 15 sec)

u	� Adding directory data blocks to metadata area: 134 seconds
(2 min 14 sec)

u	� Caching cylinder group blocks in pass1 to avoid the need to
read them in pass5: 84 seconds (1 min 24 sec)

In Appendix 1 [4] are the summary statistics for each run. I/O
listed as ‘‘Double Level Indirect’’ includes all double-indirect
blocks referenced from inodes and all the single level indirect
blocks below them. Similarly, ‘‘Triple Level Indirect’’ includes
all triple-indirect blocks referenced from inodes and all the
single and double level indirect blocks below them. The key
observation is that whereas the number of I/Os of each type of
data remain similar from run to run, the percentage of time for
reading the metadata has dropped dramatically.

I ran just a few tests on the speed with which data could be read
from or written to files. Random read times improved a bit. The
remaining tests were not statistically significantly different.
More thorough tests would need to be run to get a reasonable
idea of whether it makes any difference; first results imply no
degradation and some hints at improvement.

Conclusions
This work has once again shown the power of separating the
filesystem layout policy routines from the implementation rou-
tines. I was so excited by the possibilities presented by the FAST
’13 paper that I skipped lunch after hearing the presentation so
I could try implementing it in FFS. By the time the 90 minute
lunch break was over, I had fully written the 100 lines of changes
(half of which were comments) to the block layout policy routine

to implement the reserved metadata area. And I had no fears of
bringing it up on my primary server to test it out because I knew
that at worst I would get some badly laid out files; certainly I was
not running the risk of corrupting my filesystems.

By retaining the same on-disk format, I did not need to make any
changes to fsck. The stock fsck just ran faster because of the new
layout of metadata. I did need to make about 100 lines of changes
to fsck to add the caching of cylinder groups between pass1
and pass5; however, that was a trivial change and one that will
provide equal improvement whether or not the new filesystem
layout is in use. The vast majority of my time has been spent
measuring the effects of the changes and writing this paper.
Having spent time writing or tuning fsck for the past 30 years, I
never would have guessed that so much improvement in running
time could come from fsck for so little effort.

The lesson to be learned is that separating policy from imple-
mentation is an important design principle when architecting
software systems, especially when they are mission-critical
systems. The policy layer allows new ideas to be implemented
and tested quickly. Once validated, those ideas can be deployed
without danger of compromising the integrity of the system.

I commend the authors of the paper for their work. Unfortu-
nately the filesystem on which they worked is not separated into
policy and implementation layers, so they had to make several
thousand lines of changes in areas where bugs would compro-
mise the filesystem integrity. The monolithic architecture led to
a great deal more effort on their part than would otherwise have
been necessary. Finally, the scope of the change and the possibil-
ity of destabilizing a production filesystem will make it far more
difficult for them to get their changes accepted back into the
mainline code base.

References
[1] A. Ma, C. Dragga, A. Arpaci-Dusseau, & R. Arpaci-
Dusseau, “ffsck: The Fast File System Checker,” 11th
USENIX Conference on File and Storage Technologies
(FAST ’13), http://www.usenix.org/conference/fast13/
ffsck-fast-file-system-checker (February 2013).

[2] M. K. McKusick & G. V. Neville-Neil, The Design and
Implementation of the FreeBSD Operating System, Addison-
Wesley, Reading, MA (2005).

[3] K. Smith & M. Seltzer, “A Comparison of FFS Disk Alloca-
tion Algorithms,” Winter USENIX Conference, pp. 15-25,
http://www.eecs.harvard.edu/margo/papers/usenix96-ffs
(January 1996).

[4] Appendix 1: http://www.usenix.org/publications/login/
april-2013-volume-38-number-2.

Research Partnerships

The Mission of Oracle Labs is to identify, explore, and transfer new technologies that have the potential
to substantially improve Oracle’s business. Oracle Labs researchers look for novel approaches and
methodologies, often taking on projects that are high risk, uncertain, or difficult to tackle within a product
development organization. Oracle Labs research is focused on real-world outcomes: our researchers aim to
develop technologies that will someday play a significant role in the evolution of technology and society.
We maintain a balanced research portfolio, including exploratory research, directed research, consulting
and product incubation.

The External Research Office at Oracle Labs invests in research collaborations that narrow technology gaps,
explore and expand new technologies. Oracle Labs hosts undergraduate and graduate student interns,
postdocs, and visiting professors to partner with leading researchers in onsite collaborations. Oracle Labs
also funds off-site research through partnerships with research institutions worldwide. In the past two years,
Oracle Labs funded 50 universities and 90 students worldwide. Last year alone, Oracle Labs hosted 63 interns.

Areas of Research
VLSI Circuit Design
Hardware / Software Co-design
Query Processing on Extreme Scale-out
Architectures
Processor Design
Integrated Circuit Packaging
Domain-Specific Language Design and
Implementation
Managed Language VM technologies

Silicon Photonics
Information Retrieval and Machine Learning
Operating Systems in the Cloud
HW Application Accelerators in the Network
Persistent Programming Languages
Program Analysis for Correctness & Vulnerability
Detection
Graph Analytics
Scalable Concurrency

L A B S

Locations
Based at Oracle headquarters in Redwood Shores, CA, Oracle Labs
also has research centers in Boston, MA, Austin, TX, San Diego, CA,
Linz, Austria, Cambridge, UK, Vancouver, CA, and Brisbane, Australia.
Senior individual researchers work from remote locations all over the
world, from Germany to New Zealand. The geographic spread allows
Oracle Labs to take advantage of a tremendous pool of scientifi c and
engineering talent and enables Labs researchers to collaborate with
colleagues from a wide range of industries and universities.
For more information on how to establish a research collaboration,
visit https://labs.oracle.com, or contact Marie-Therese Ellis at
marie-therese.ellis-house@oracle.com.

