
SYSADMIN

34   ;login:  VOL. 38, NO. 1

I have wanted to run an article about Hadoop performance for a while, and my
search for an expert finally paid off. Justin Sheehy, CEO of Basho, suggested that I
interview Allen Wittenauer of LinkedIn.

I had naively thought that the way to improve, or at least maintain, Hadoop perfor-
mance was to monitor the performance of the cluster, but Allen, with experience as
both a Hadoop developer and large cluster operator, has very different thoughts on
the subject.

I started out by reading the slides of a old presentation that Allen wrote called
“Hadoop 24/7”. Among his suggestions were to run the checks hadoop dfsadmin

-fsck and <t>hadoop dfsadmin -report nightly, and to use an NFS backup of the
NameNode file system image. You can find an updated version of his presentation at
https://www.usenix.org/sites/default/files/login-1302-wittenauer-slides.pdf.

Rik: Let’s start with some information about your background as it pertains to
Hadoop. Looking at your LinkedIn references, I can see you worked for Sun, then
Yahoo!, and now LinkedIn. Also, you are a Hadoop committer, which implies a lot
about your ability to talk about Hadoop. Can you tell me more?

Allen: After a few years working at a software company that supported hospitals, I
wanted to get involved with bigger scale problems. A friend of mine said they were
hiring at Sun and would I be interested. “The network is the computer”… yes! I was
lucky enough to get hired and moved up the ranks. As a result, I had the privilege of
bringing order to the chaos that organic growth brings at larger and larger scales.
Three such problems were building a single NIS domain to handle 100,000+ hosts
spread across the entire SF Bay Area, OS provisioning on an intercontinental scale,
and building a world-wide, single realm Kerberos deployment.

A layoff and a short stint at a startup later, I found myself talking to Yahoo! about
Hadoop. They were interested in the same sorts of problems, but with a view toward
sharing the solution with the world at large. Many companies solve these problems
using home-grown tools; however, when one is trying to build a community around
what was mostly (at the time) unproven technology, it is vital that you show a solu-
tion that they themselves can use. I was brought in to “rethink” Yahoo!’s operational
infrastructure with an eye toward open source, what I would call “burning the
house down.” It was very “startup”-like, so while that’s what I was hired for, I ended
up doing a lot more than that and had the honor of directly impacting some of the
key components in Hadoop, especially as it relates to operations.

Allen Wittenauer on Hadoop
An Interview

R I K F A R R O W

Allen Wittenauer is currently
the Senior Grid Computing
Architect at LinkedIn, Inc. He
has been working with Hadoop

with an eye toward operability for almost six
years. aw@apache.org

Rik is the editor of ;login:.
rik@usenix.org

	 ;login: FEBRUARY 2013 Allen Wittenauer on Hadoop   35

Rik: In the earlier versions of your slides, you mentioned using hadoop commands
nightly to check the health of the underlying HDFS. Have these suggestions changed
over time?

Allen: The basics are still the same, but Hadoop has greatly matured in the past
four years since this presentation was completed. While doing at least a nightly
fsck to check for health is still important, there is a lot more information now
available to use for basic monitoring and metrics collection via the normal Hadoop
metrics plugins, JMX and JSON. In addition to CPU usage, network usage, etc., we
collect a lot of that extra Hadoop data plus some additional ones such as disk ser-
vice times to build a macro view of the overall system’s health. While the metrics
Hadoop provides tend to be extremely low level, just keeping track of values such as
“tasks completed” can be useful to see if the overall grid is getting faster/slower.

One of the key points about monitoring is that you want to check the health of the
service. I recommend having a tiny job that runs every 15 minutes as a canary to
verify everything is working. In addition, alerting on percentage of down nodes vs.
on individual node failures becomes increasingly important as you scale up. That’s
a common mistake when people first start working with Hadoop. We’re all trained
from the beginning that every machine is important because most services are
fragile. If the compute nodes are properly provisioned, losing a few shouldn’t mat-
ter. It’s a hard concept to unlearn.

Rik: You also mentioned issues with the NameNode, which has always (for me)
been the scariest part of HDFS.

Allen: From an Enterprise view of the world, the fact that single points of failure
exist in the system at all is shocking. From an HPC/scientific view, not as much. I
think people forget that for a long time Hadoop was being built in a “two guys in a
garage” fashion to solve fairly specific problems. There wasn’t a priority placed on
five-9s of uptime for a system that was geared toward batch computation. Scal-
ing up to petabytes of data and fixing performance issues related to processing
that large of a data set were the priorities. It was acceptable to have, say, an hour
of downtime in the case of a failure. Now that many more people are interested
in using HDFS for real-time access with technologies like HBase and the ever
increasing commercial interest, the focus has shifted. The 2.x branch of Apache
Hadoop will include high availability of the NameNode.

Something else to consider: using something like Xen’s Live Migration or another
HA solution—Linux HA, SunCluster, whatever—is also an option. Administrators
shouldn’t be afraid of trying to apply other methods.

That said, I think too much focus is placed on this limitation. In the almost six
years, 30+ grids, 30k hosts, and two companies where I’ve run Hadoop, the number
of times where a highly available NameNode would have saved me from service
downtime can be counted on one hand. Almost all cases of NameNode failures are
configuration problems or bad user behavior, none of which high availability will
actually help prevent from a downtime perspective. Additionally, I find it some-
what odd that no one seems to be too concerned about the lack of availability for
the JobTracker. A file system with nothing running on it isn’t very useful.

Rik: You have suggestions in your slides [1] for setting up the NameNode (mostly
lots of memory, as that is key to performance), and recovering a NameNode using
an NFS replica of the image. As I want to focus on troubleshooting performance
issues, I am more interested in maintaining the health of the NameNode than

36   ;login:  VOL. 38, NO. 1

recovering it. But writing the change log to an NFS mounted file might be a perfor-
mance issue. What other performance issues should people running a NameNode
be aware of? Do you still recommend using NFS for the backup change log?

Allen: Until the 2.x branch is stabilized, yes, I do. At LinkedIn, we actually store
our primary NFS copy on the secondary NameNode. At Yahoo!, we had some older
NetApp boxes that were too small for another project that we repurposed for this
task. The number of IOPS obviously scale to how busy a particular HDFS might be,
but in most cases this is relatively light. Even so, it is important to make sure that
the NFS server is nearby on the same network core since you don’t want too much
latency. Another key point is that the NameNode can work off of only one fsimage
and edits file. If the primary machine has a file system failure where the image is
stored, it will continue to run off of the NFS copy.

Rik: How does a sysadmin go about uncovering performance problems in a Hadoop
cluster? You’ve said that maintaining the health of HDFS is one key, and the
NameNode is another. But there may be other causes of big (noticeable) drops in
performance when executing a job that gets done every day.

Allen: One of the most important actions that users can do is take a holistic view
of the work they are trying to accomplish. Many, many times users will tune
individual jobs, making them as fast as possible so that they can iterate during
development quickly. In the process, they hit an anti-pattern in the production
phase where the parallelization is too high to the point that the entire workflow is
performing worse. For example, increasing reducers to the point that many small
files are generated has an extremely negative network impact on the next phase
of the MapReduce job that is going to read those files, either during the read of the
input or in the shuffle phase.

I’m also a big fan of getting your hands dirty at the micro level. When dealing with
large, scalable systems, the temptation is high to look at your metrics for the entire
system and say everything looks fine. What you miss out on is that you might have
one job or an internal framework or something else that has bad behavior. Averaged
out, that’s easily missed. But dropping down to the shell and just getting a feel for
what is happening on a per-node basis is extremely helpful. Years ago, we shaved
hours of processing from some very important workflows at LinkedIn by discover-
ing a hidden bug in a commonly used internal framework. It wasn’t properly cach-
ing data from an external hint file and in turn was triggering an extra I/O on one
of the six disks for every record read. From the macro level, it was averaged away
but dropping down, and using tools like truss, dtrace, iostat, and sar made it really
stick out.

Rik: What about tunables? I hear that there are a ton of them and they almost all
have an impact on performance.

Allen: Yes, there are an amazing assortment of settings that can be applied to a job.
The running joke in the early days was that we’d hit a particular corner case and
have to add something to the configuration to tackle that problem. Unfortunately,
there is no magic bullet to know which particular tunable is the correct one to
modify. This is made worse by the fact that some tunables, such as io.sort.mb, have
a direct impact on how other tunables will operate. Today, the best bet is to use the
job and system metrics to determine whether the setting you’ve changed made a
difference. Usually one of the biggest mistakes people make here is to just throw
more heap at the problem. In most cases, this is the wrong thing to do. So that
should be the last thing that is changed.

	 ;login: FEBRUARY 2013 Allen Wittenauer on Hadoop   37

I’m excited about tools like Duke University’s Starfish project (http://www.
cs.duke.edu/starfish/). We’ve been doing cooperative research in the hopes that
exposure to “real world” conditions will improve its suggestions. In the future, this
means that we will have some utilities to automatically tune workflows for nearly
maximum performance.

Of course, bad algorithms will still be bad no matter how much tuning one does.

Rik: In your slides, you mention there is no real security in Hadoop, and I’ve seen
postings to this effect. I’ve also read a posting by you mentioning adding Kerberos
support. That means adding another dependency to Hadoop, although one that
most orgs can easily support if they have AD or Samba 4, so perhaps this is not
really a performance issue. But maybe I am wrong, and having an overutilized AD
server or congested network link to it could slow down a Hadoop cluster..

Allen: There was a great debate about how do we secure Hadoop. For quite a while,
Hadoop didn’t even have the concept of permissions or even of different users.
Those were only added to prevent users from accidentally deleting each others’
data. There was always the thought that “we should secure the system,” but other
priorities prevented that from happening. Eventually, business realities forced
the issue and we had the challenge of how do you secure a highly scalable service
while also making it perform? We knew we didn’t want the system to prompt for a
password and then pass that around. Clearly we needed something that was single
sign-on, the holy grail. There was a big debate around using x.509 certificates/
PKI vs. Kerberos. Ultimately, the decision came down to implement SASL so that
people could build their own solution if necessary, but we were going to go with
built-in support for GSSAPI with Kerberos.

A big chunk of that decision was exactly as you stated: most places have Kerberos
in the form of Active Directory, even if they don’t know it. That takes care of the
authentication portion, but now what about scale? It was decided to use a token
mechanism so that individual daemons wouldn’t be an inadvertent DoS against
the KDCs. In this way, your Kerberos credential is used by your job client against
individual services, that client gets a token, and then that token is used throughout
the rest of your job’s lifecycle to access other parts of the system without impacting
the KDC. That takes care of overextending a potentially overutilized AD server.

Reality, however, is a bit different. Internal politics for most organizations likely
make this less cut and dried. If user accounts, and therefore their AD credentials,
are controlled by IT, does that same organization really want to hand out Kerberos
keytab files for potentially thousands of machines that they don’t control? Prob-
ably not. So what ends up happening is that companies do a one-way trust so that
IT still owns the corporate infrastructure and the “other” organization (Web
operations, DBAs, development, whoever) can tie their Hadoop systems to a local
Kerberos infrastructure. Users still have one password (which makes them happy),
the Hadoop operations team has control over their boxes (which makes them
happy), and all of your data is nicely secured (which makes everyone happy). As
an added bonus, this also helps balance out the performance implications as the
Hadoop systems will mostly be hitting the local KDCs.

Rik: This is great information. Is there anything else you’d like to add?

Allen: Just a big thank you to the wonderful services and information that USENIX
and LISA have provided over the years. I’m truly honored to be able to contribute
back to the technical excellence that these organizations represent.

