
26    F eb rua ry 20 14  Vo l . 3 9, N o. 1 	 www.usenix.org

Loser Buys
A Troublesome Retrospective

M a r k B a i n t e r a n d D a v e J o s e p h s e n

Mark Bainter is the Director of
Global Support and Operations
at Message Systems Inc.,
where he works with a talented
team of sysadmins to provide

support and outsourced monitoring and
management for Message Systems’ cross-
channel messaging software. In his spare time
he currently enjoys woodworking and tinkering
with Arduino hardware.
mbainter+usenix@gmail.com

David Josephsen is the
sometime book-authoring
developer evangelist at
Librato.com. His continuing

mission: to help engineers worldwide close the
feedback loop. dave-usenix@skeptech.org

Dave: Rik Farrow wants some troubleshooting stories for the next ;login issue. Loser buys?

Mark: You sure about that, son? Need to check your balance first or anything?

Dave: Just for that, I’ll let you go first.

Mark: Your funeral. First, a bit of background—the company I currently work for has a tool
called “Gimli” [1], which you can link against your application and then use to ensure that it
remains up and functioning, similar to “supervise.” Gimli also does heartbeat monitoring,
however, and if it crashes or has to be killed and restarted for being unresponsive, will take a
snapshot of the stack, along with various details about the process for later review.

Dave: Nice. I bet that comes in handy.

Mark: Oh, it does. It’s helped us resolve all sorts of weird issues that would otherwise require
you to sit and watch and wait for the problem to happen. Best of all, you don’t have any of the
unpleasant side effects of some alternative methods of catching intermittent issues. Not to
mention increasing the resilience of your application.

Anyway, a while back, in the middle of the night, I get an alert—the /var partition on one of
the servers I manage is filling up quickly. That’s definitely not good. Investigating, I find the
disk is already nearly full, and in moments I find the culprit to be the log file for this Gimli
process. The process it’s managing is wedged, and Gimli is in a loop logging the same error
over and over into the log, reporting that it has received a TERM signal and is terminating.
That’s really odd—I’ve never seen this failure condition before. I kill both processes, clean the
Gimli log, and restart.

Reviewing the logs subsequently offers no clues as to what happened. There’s no stack trace
either. Curiouser and curiouser. I don’t like unexplained activity like this, but it’s the middle
of the night and I’m at a dead end. I turn in.

The next morning it happens again. Same time. Now I have a hint. After I restore service, I
start looking through the application’s activity during that window, into the system logs, cron
jobs, etc. It doesn’t take me long to correlate the log rotation with the time window where this
is occurring.

Dave: Ah, 4 a.m., when the logrotate bugs come out to play.

Mark: Exactly. This process that Gimli is monitoring is set up with a fairly standard daily
rotation, followed by compression and then a postrotate instruction to send a HUP signal to
force reopening of the logs.

I spin up a VM and start doing some testing and at first I can’t reproduce the problem. I run
the log rotation and everything works fine. Then it hits me. Some time back I made a modi-
fication to the logrotate script! By default we were not rotating the error log for this process,
because it is almost never written to. This node, however, was throwing a lot of errors which
another team had been investigating, so in the interim I had set up log rotation to keep it from
filling the disk.

I add the path to the error log in the logrotate script on my virtual machine, rotate the logs,
and sure enough, the rotate failed, and the log was filling up. Now I have a readily reproduc-

mailto:mbainter+usenix@gmail.com

www.usenix.org	   F eb rua ry 20 14  Vo l . 3 9, N o. 1  27

SYSADMIN
Loser Buys: A Troublesome Retrospective

ible problem. Of course, this still doesn’t explain the why, or the
why now. After resetting the test, I do some tests with GDB,
which is frustrating because the heartbeat method used by this
app was sending a USR1 signal which kept causing GDB to stop.

Dave: You know, you can set a nostop pass signal handler in GDB
to get around that [2].

Mark: Yeah, but at the time I wasn’t aware of it, and there’s
another favored tool to reach for that could readily report those
without being interrupted—namely, strace. In short order I dis-
cover that there are actually two HUP signals being sent in short
succession.

Dave: Right. Logrotate would have sent one signal for each logfile
unless you set the sharedscripts option.

Mark: Yeah, well, I didn’t remember that when I set up the config,
but I remembered it now. The full explanation here of what was
happening requires some understanding around how the Gimli
process interacts with the processes it monitors, so I’m going
to gloss over some of that for the sake of not boring our readers.
Basically, when Gimli saw the HUP come in, it created a new ver-
sion of itself to take over monitoring the process, but the second
HUP came in before that execve could complete. As a result, the
two copies of Gimli would become confused, and continuously
try to kill each other in a vicious loop, resulting in flooding the
error log with the termination messages. Since neither would
honor the TERM signal fully as a protective measure for a moni-
toring process, the loop never ended. Thankfully, more recent
versions have addressed this weakness.

Dave: Heh, if you’d named it “Claudius” instead of “Gimli,” it
might have been more adept at fratricide. Okay, so now I under-
stand the why, but I’m confused why it suddenly started happen-
ing. Wouldn’t it have begun delivering a double HUP as soon as
you first modified logrotate? Why didn’t it happen right after you
made the change?

Mark: That’s the real kicker isn’t it? Luckily, this was the easy
part to figure out. When I first implemented it, as I said, this
node was throwing a lot of errors, forcing me to implement the
rotation. Since then, the problem causing those errors had been
fixed, unbeknownst to me.

Dave: Oh! It was a race condition. When the log files had content,
the time logrotate spent copying and compressing them would’ve
given Gimli enough time to fork, so everything was fine. It was
only when the log files were empty that the HUPs would win. Nice!

Mark: Got it in one!

Dave: Damn…that’s a great story, and I’m not sure I can top it, but
here’s my favorite troubleshooting story. I like it because there’s a
bit of dramatic panache at the end.

Anyway, we were having trouble with a Web application that
we’d just put in production. The setup looked like Figure 1. The
problem presented as some intermittent latency when using the
app. Sometimes it worked fine, other times it was very slow, and
still other times it didn’t work at all. And this wasn’t like, over
the course of one hour it’d be slow and the next it’d work fine, this
was like, one HTTP request might work fine while two others
executing concurrently did not.

Mark: Sounds fun.

Dave: It wasn’t. And for the first and only time in my professional
career, when the developers started blaming “the network,” it
looked like they were actually right. Working our way down the
stack we were pretty convinced that packets weren’t getting
to the application server. Somehow this network was eating
packets, and obviously it wasn’t any sort of ACL or filtering stuff
because some requests were making it through just fine.

So here’s the background you need to understand: the internal
core routers were two OpenBSD systems running CARP (Com-
mon Address Redundancy Protocol) with pfsync. It’s pfsync’s
job to replicate the firewall state table between the master and
failover nodes, such that, if they ever fail over, the failover router
will know about all the active and authorized connections. With-
out pfsync, the backup router would drop all the existing network
connections and force them to re-handshake. We have a physi-
cal network port on each router configured specifically just for
pfsync, and the two routers are directly connected to each other
via a crossover cable on this port.

CARP creates a magical virtual network device whose sta-
tus is shared between the two routers. CARP is what actually
enables the backup router to detect and take over for a failed
master router without the MAC or IP address changing for other
network entities.

The balancers meanwhile operated using a multicast MAC
address…

Figure 1: In Dave’s troubleshooting conundrum, packets were disappearing
somewhere between the load balancers and app servers. One of the pair
of firewalls is a backup, using CARP to share state with the active firewall.

28    F eb rua ry 20 14  Vo l . 3 9, N o. 1 	 www.usenix.org

SYSADMIN
Loser Buys: A Troublesome Retrospective

Mark: Was there IGMP?

Dave: No, and that’s important. As you know, in the absence of
IGMP the default behavior of a Cisco router is to broadcast the
multicast packets to all live switchports in the same VLAN.

Mark: I think I see where this is going.

Dave: Shut up. Anyway, there I was, stumped. I could tcpdump
the traffic as it came from the Internet to the balancers. That
looked okay. But only a subset of the traffic was making it to the
application tier nodes. It was maddening because I couldn’t seem
to narrow it down to any one device. Watching the firewalls
carefully I could see that they weren’t failing over. Watching the
packet traces in the apptier, it looked like traffic worked fine for
a while and then every so often, a good connection would just
freeze. Eventually, when this happened the apptier node would
send an RST and stuff would start working again. The balancers
seemed to be getting traffic okay, but they were also freezing and
RSTing every so often.

I had a bit of an ah-hah moment when I started looking at the
packet traces on the failover firewall. It appeared to be getting a
copy of all the multicast traffic that was destined for the balanc-
ers. This was odd because in CARP backup mode, the failover
router isn’t answering ARP on its CARP virtual devices, and
should therefore not receive any of the traffic for those shared IPs.

Mark: Even if the failover was getting traffic, it shouldn’t be
routing it.

Dave: Exactly my thinking. Evidently the traffic was appearing
on the backup firewall because in the absence of IGMP, the Cisco
3750 was broadcasting that traffic to all active switchports in
the VLAN, including those of the failover router. But that traffic
should be harmless anyway since the failover router would just
drop it all on the floor. I was back to square one.

Mark: Or were you?

Dave: Or was . . . shut up. I stared at the rack a few minutes, trying
to imagine every possible path a packet might take through this
rather simple little network, and something interesting occurred
to me when I imagined what might happen to me if I were one of
those multicast packets that had been duplicated to the failover
firewall. The interesting thing was that I would wind up in the
inbound packet buffer on the firewall’s DMZ port while the
firewall checked its state table and ACLs. Our assumption that
the traffic wouldn’t be forwarded is based on the fact that the
backup firewall wouldn’t have a state table entry for the connec-
tion in question.

Mark: Right, the failover firewall would compare the source and
destination addresses of the packet to its internal list of existing
states, and then, not finding one, it would drop the packet.

Dave: Except OpenBSD’s pfsync service replicates that state table
between the master and failover CARP nodes. The failover router
has every active state that the master does, and therefore DOES
in fact have a state table entry that matches the packet. So there’s
an interoperability bug between Cisco and OpenBSD pfsync . . .

Mark: OpenBSD assumes the Cisco won’t give it a packet it
doesn’t ARP for . . .

Dave: Yes, exactly, and Cisco assumes OpenBSD isn’t going to
forward a broadcast packet because it won’t exist in its state
table.

Mark: So why isn’t there a broadcast loop that affects the master
firewall node? Wouldn’t the master also receive a copy of the
multicast packet?

Dave: No, because the master firewall is the default gateway
device for the network, so it’s the switchport that originated the
traffic, and will therefore not receive a copy of the broadcast.

Mark: Man, that’s hairy. What happens when the failover node
tries to route that packet?

Dave: I don’t know exactly. It’s undefined, but in that network,
intermittent latency and lots of RST ensued.

Anyway, here’s the best part. I have this big eureka moment,
and jump up out of my chair excitedly describing my hypothesis
to the other engineer who is working the problem with me. He
thinks I might have it solved, but wonders out loud how I’m going
to test whether I’m right or not. Not answering, I walk over to the
rack and with as much showmanship as I can muster, ceremoni-
ously rip out the pfsync cable connecting the two routers. TA-
DAAA problem solved!

Mark: Nice, but what about clean failover?

Dave: It’s not really an issue for us, because we usually use Pix’s
on the edge, but you could manually configure the switch ARP-
table so they didn’t broadcast, or you could use IGMP if possible,
or, yeah, just run the firewalls without pfsync, which might bite
you later on, but not very much. The network would “hiccup”
whenever they failed over, and the users who did get an error
could hit the reload button and everything would be fine.

Dave: Well, I think you probably won that one. I mean you had
interprocess warfare and GDB!

Mark: Really? I kind of liked yours because I might one day try to
run PF and mod_proxy_balancer with Cisco switches, and you
probably just saved me a headache.

Dave: Well, Rik, we’ll leave it to you. Who’s buying?

Rik: Dave, you’re buying. While both stories are good, Mark did a
better job of explaining exactly what had gone wrong, as well as
having more twists and turns. Your solution, breaking the con-

www.usenix.org	   F eb rua ry 20 14  Vo l . 3 9, N o. 1  29

SYSADMIN
Loser Buys: A Troublesome Retrospective

nection between firewalls, fixes the problem without telling us
exactly what was going wrong. Not that figuring that out would
be easy, as it likely lies in the IP stack of OpenBSD somewhere.

References
[1] https://github.com/MessageSystems/gimli.

[2] http://sourceware.org/gdb/onlinedocs/gdb/Signals.html.

Become a USENIX Supporter and
Reach Your Target Audience

The USENIX Association welcomes industrial sponsorship and offers custom packages to help you
 promote your organization, programs, and products to our membership and con ference attendees.

Whether you are interested in sales, recruiting top talent, or branding to a highly targeted audience, we
offer key outreach for our sponsors. To learn more about becoming a USENIX Supporter, as well as our
multiple conference sponsorship packages, please contact sponsorship@usenix.org.

Your support of the USENIX Association furthers our goal of fostering technical excellence and innovation
in neutral forums. Sponsorship of USENIX keeps our conferences affordable for all and supports scholar-
ships for students, equal representation of women and minorities in the computing research community,
and the development of open source technology.

Learn more at:
www.usenix.org/supporter

