
28    AU G U S T 20 14  VO L . 3 9, N O. 4 	 www.usenix.org

SECURITY

cTPM
A Cloud TPM for Cross-Device Trusted Applications

C H E N C H E N , H I M A N S H U R A J , S T E F A N S A R O I U , A N D A L E C W O L M A N

Current Trusted Platform Modules (TPMs) are ill-suited for use in
mobile services because they hinder sharing data across multiple
devices seamlessly, they lack access to a trusted real-time clock, and

their non-volatile storage performs poorly. We present cloud TPM (cTPM),
an extension of the TPM’s design, to address these problems. cTPM includes
two features: a cloud seed shared between the TPM and the cloud, and
remote storage in addition to the on-chip storage. cTPM allows the cloud to
create and share TPM-protected keys across multiple devices, to manage a
portion of a mobile device’s TPM storage, and to provide each TPM with a
trusted real-time clock and with high-performance non-volatile storage.

Introduction
People are increasingly relying on more than one mobile device. Recent news reports esti-
mate that the average US consumer owns 1.57 mobile devices; Singapore has 7.8 million
mobile devices, which translates to 150% mobile penetration; and the average Australian will
own five mobile devices by 2040. Given this trend, mobile platforms are recognizing the need
for “cross-device” functionality that automatically synchronizes photos, videos, apps, data,
and even games across all devices owned by a single user.

Mobile platforms, such as laptops, smartphones, and tablets, are increasingly incorporating
trusted computing hardware. For example, Google’s Chromebooks use TPM to prevent firm-
ware rollbacks and to store and attest a user’s data encryption keys. Windows 8 (on tablets
and phones) offers BitLocker full-disk encryption and virtual smart cards using TPMs.
Recent research leverages TPMs to build new trusted mobile services [3, 7], trusted cloud
services [8], and operating systems [9].

Unfortunately, these two trends may be at odds: Trusted hardware, such as the TPM, does
not provide good support for cross-device functionality. Specifically, we have identified three
limitations in the TPM design that hamper building cross-device trusted applications.

Limitation 1: Cross-Device Data Sharing. Current TPM abstractions offer guarantees
about one single computer, and TPM’s hardware protection mechanisms do not extend
across devices. For example, TPM’s owner domain provides an isolation mechanism for only
a single TPM. A new owner of the TPM cannot access the previous owner’s TPM-protected
secrets. When the same user owns two different TPMs (on two different devices), the owner
domains of each TPM remain isolated and cannot jointly offer hardware-based protection of
the user’s keys and data. Thus, mobile services cannot rely on TPMs alone to enable secure
data sharing across devices. While, in theory, migrating a TPM-protected key from one TPM
to another is possible, in practice, it requires using secure execution mode (SEM), such as
Intel’s TXT and AMD’s SEM, and trusting a third-party PKI. Such requirements are very
challenging. Our NSDI paper [2] describes in more depth the nature of these challenges.

Limitation 2: Trusted Clock. Today’s TPMs do not offer a trusted real-time clock.
Instead, the TPM combines a trusted timer with a secure, volatile counter, which is periodi-
cally persisted to the TPM’s NV storage. However, this mechanism can keep track of time

Chen Chen is a PhD student in
the Department of Electrical
and Computer Engineering at
Carnegie Mellon University. He
is advised by Professor Adrian

Perrig. He holds BS degrees in applied math
and automation from Tsinghua University. His
research interests include network security,
secure network architecture, and trusted
computing chenche1@andrew.cmu.edu

Himanshu Raj is a principal
software engineer in the Azure
Cloud Networking group at
Microsoft, Silicon Valley.
He is interested in systems,

networking, and security. Before joining
Azure, Himanshu worked in the XCG Lab at
Microsoft Research, where he focused on
systems solutions for trusted computing.
Himanshu holds a PhD from Georgia Institute
of Technology, Atlanta, and a Bachelor
of Technology from Indian Institute of
Technology, Guwahati. rhim@microsoft.com

Stefan Saroiu is a senior
researcher in the Mobility and
Networking Research Group at
Microsoft Research in Redmond,
WA. Stefan’s research interests

span mobile systems, distributed systems,
and computer security. Before joining MSR in
2008, Stefan spent three years as an assistant
professor at the University of Toronto and four
months at Amazon.com, where he worked on
the early designs of their new shopping cart
system (aka Dynamo). Stefan finished his PhD
at the University of Washington where he was
co-advised by Steve Gribble and Hank Levy.
ssaroiu@microsoft.com

mailto:chenche1@andrew.cmu.edu

www.usenix.org	   AU G U S T 20 14  VO L . 3 9, N O. 4  29

SECURITY
cTPM: A Cloud TPM for Cross-Device Trusted Applications

only when the TPM is running (and not when the platform is powered off). Moreover, after
an unclean reboot, the timer is rolled back to the last persisted counter value violating mono-
tonicity. The TPM’s timer mechanism solely guarantees that as long as the platform does not
reboot, the timer will move forward. As such, it can provide an approximate time-since-boot.

This mechanism is inadequate for offering real-time guarantees that would be useful for
offline content access. For example, movie studios already charge a premium to make a
movie available on home theaters on the day of release. Although TPMs can provide offline
access securely, they cannot offer making the new movie available for watching next Friday
at midnight.

Limitation 3: Non-Volatile (NV) Storage. The TPM’s NV storage is inadequate for
applications that require frequent writes or require large amounts of trusted storage. For
example, previous work [3] has shown that a trusted module offering a monotonic counter
and a key solves several problems in distributed systems that stem from participants’ ability
to equivocate. Unfortunately, even though TPMs offer this functionality, their implementa-
tion of NV storage cannot meet the write frequency requirements of distributed systems
protocols. The TPM specification dictates the inclusion of monotonic counters, but the spec
requires only the ability to increment these counters at a very slow place (e.g., once every
five seconds), which is insufficient for high-event applications such as networked games [3].
Similarly, although the TPM specification mandates access-controlled, non-volatile storage,
most implementations provide only 1,280 bytes of NVRAM [7]. These limitations have led
researchers to seek alternative designs for trusted devices [3].

Overcoming these limitations requires altering the TPM design, which raises the following
question: Can a small-scale TPM design change overcome these limitations? Although a clean-
slate TPM redesign could provide a variety of additional security properties, there are two
pragmatic reasons why a smaller change is preferable. First, TPMs have undergone a decade
of API and implementation revisions to reduce the likelihood of vulnerabilities. A clean-slate
redesign would demand considerable time and effort to provide a mature code base. Second,
TPM manufacturers would more willingly adopt smaller and simpler changes.

To address these limitations, we propose a single, simple modification to the TPM design,
called cTPM: equipping the TPM with one primary seed that is shared with the cloud. Shar-
ing the seed with the cloud allows both cTPM and the cloud to generate the same cloud root
key. Combining the cloud root key with remote storage lets cTPM: (1) share data via the
cloud, (2) have access to a trusted real-time clock, and (3) have access to remote NV storage
that supports a large quantity of storage and high frequency writes.

cTPM’s design facilitates data sharing. The pre-shared primary seed lets the cloud effec-
tively act as a PKI. The cloud and the device’s TPM can use this shared secret to encrypt and
authenticate their messages to each other. The identity problem has now been “pushed” to
ensuring that the cloud primary seed is shared securely between cTPM and the cloud. This
initial sharing step should be done at cTPM manufacturing time when the cTPM’s three
other primary seeds are provisioned.

The pre-shared primary seed also equips cTPM with a trusted clock using a protocol similar
to the Time Protocol described in RFC 868. Once the clock value is obtained from the cloud,
cTPM uses its local timer to advance the clock. It has a global variable that dictates how
often it should resynchronize the clock; the TPM owner sets this variable whose default
value is one day.

Finally, cTPM uses the cloud for additional NV storage to overcome TPM NV storage limita-
tions. There are no limits on how much additional NV storage the cloud can provide to a
single cTPM. A portion of the physical cTPM chip’s RAM is thus allocated as a local cache

Alec Wolman is a principal
researcher in the Mobility and
Networking Research Group
at Microsoft Research in
Redmond, WA. His interests

include mobile and wireless systems,
distributed systems, and computer security.
He received a PhD in computer science from
the University of Washington in 2002. Before
graduate school, he worked for DEC at the
Cambridge Research Lab. 
alecw@microsoft.com

30    AU G U S T 20 14  VO L . 3 9, N O. 4 	 www.usenix.org

SECURITY
cTPM: A Cloud TPM for Cross-Device Trusted Applications

for the cloud-backed NV storage. The performance of cTPM
cloud-backed NV storage exceeds that of the TPM because TPM
NV accesses are no longer needed.

Background
TPM Primer. At manufacturing time, TPM chips are provi-
sioned with a couple of public/private key-pairs for cryptography
(i.e., digital signatures and asymmetric encryption). The TPM
design guarantees that the private keys of these root key-pairs
never leave the TPM, thereby reducing the possibility of compro-
mise. TPMs can also generate public/private key-pairs with pri-
vate keys stored in the TPM’s NV storage. However, TPMs have
limited NV storage and thus cannot store many such key-pairs.

The TPM specification also mentions that a certificate dem-
onstrating the authenticity of the TPM’s embedded key pairs
may be provided by the TPM’s hardware manufacturer. In our
experience, many TPMs (although not all) lack this certificate.
The absence of this certificate makes it impossible for a third-
party to determine whether a signed statement (e.g., a software
attestation) is produced by a valid TPM or by an impersonating
entity.

TPMs are equipped with a set of “extend-only” platform configu-
ration registers (PCRs) that are guaranteed to be reset upon a
computer reboot. PCRs are primarily used to store fingerprints
of a portion of the booting software (e.g., the BIOS, firmware, and
OS bootloader); Chromebooks and BitLocker use PCRs in this way.

TPMs can perform cryptographic algorithms for encrypting,
authenticating, and attesting data. Implementing functionality
beyond that offered by TPMs in a trustworthy manner can be
done using secure execution mode, a form of hardware protec-
tion offered by x86 CPUs. Intel’s secure execution architecture,
called Trusted Execution Technology (TXT), offers a runtime
environment strongly isolated from other software running on
the computer. When invoked, the CPU disables interrupts (to
ensure no other software is running), and a small bootloader
starts executing. The bootloader then jumps to an address speci-
fied by the caller to execute any additional code. Flicker is an earlier
project that demonstrated the use of secure execution mode [5].

The TPM spec does not provide minimum performance require-
ments, and, as a result, today’s commodity TPMs are slow and
inefficient. TPM vendors have little incentive to use faster but
more expensive internal parts when building their TPM chips.
This performance handicap has limited the use of TPMs to sce-
narios that do not require fast or frequent operations. However,
no technological constraints prevent a hardware vendor from
building a high-performance TPM.

TPM 2.0. The Trusted Computing Group (TCG) is currently
defining the specification for TPM version 2.0, the next version
of the TPM. TPM 2.0 offers several improvements, including

cryptographic algorithm agility. For example, SHA-2 and elliptic
curve cryptography (ECC), in addition to SHA-1 and RSA, are
offered by TPM 2.0. TPM 2.0 also provides more PCRs and sup-
ports more flexible authorization policies that control access
to TPM-protected data. Finally, TPM 2.0 provides a reference
implementation, while TPM 1.2 provides only an open-source
implementation developed by a third party.

In TPM 2.0, three entities can control the TPM’s resources: the
platform manufacturer, the owner, and the privacy adminis-
trator. The TPM 2.0 spec control domain refers to the specific
resources that each entity controls. The platform firmware con-
trol domain overseen by the platform manufacturer updates the
TPM firmware as needed. The owner control domain protects
keys and data on behalf of users and applications. The privacy
administrator control domain safeguards privacy-sensitive
TPM data. Each TPM 2.0 control domain has a primary seed,
which is a large, random value permanently stored in the TPM.
Primary seeds are used to generate symmetric/asymmetric keys
and proofs for each control domain.

Trust Assumptions and Threat Model
Trusting the Cloud
All the new cTPM functionality associated with the cloud
domain assumes the cloud is trustworthy and not compromised
by malware. Although everyone may not agree with this assump-
tion, cloud providers have more incentives and resources to
monitor and eliminate malware than average users. Security-
conscious cloud providers could use secure hypervisors with
a small TCB [4], narrow interfaces [6], or increased protection
against cloud administrators [10].

Whether using a TPM or not, a cloud compromise would already
affect the security of a mobile service relying on the cloud for its
functionality. However, even if the cloud were compromised, all
secrets protected by the TPM-specific control domains, other
than the cloud domain, would remain secure. For example, all
device-specific secrets protected in the owner’s control domain
(i.e., using TPM’s SRK) would remain uncompromised.

Threat Model
Our threat model resembles that of traditional TPMs: All
software attacks are in scope (including side-channel attacks)
because cTPM is isolated from the host platform and can
therefore provide its security guarantees even if the host were
compromised (e.g., infected with malware). However, physi-
cal attacks and DoS attacks in which the (untrusted) operating
system or applications deny access to the cTPM or to the cloud
are out of scope.

Another class of attacks specific to the cTPM stems from our
use of remote cloud storage. The (untrusted) OS could drop,

www.usenix.org	   AU G U S T 20 14  VO L . 3 9, N O. 4  31

SECURITY
cTPM: A Cloud TPM for Cross-Device Trusted Applications

corrupt, or reorder messages from the cloud. Even worse, it could
delay messages from the cloud in an effort to serve stale data to
the TPM. All such attacks are in scope and addressed by cTPM;
for example, to ensure freshness, cTPM uses a local timer to
time out any pending requests not yet serviced.

cTPM High-Level Design
The cTPM design extends the TPM 2.0 by its ability to share a
primary seed with the cloud and to access cloud-hosted non-vol-
atile storage. This section describes the high-level design and the
challenges we encountered when implementing these features.
While our description is TPM 2.0-specific, our changes could be
equally applied to TPM 1.2.

Cross-Device Usage Model
Each device has a unique cTPM with a unique primary seed
shared with the cloud and used to derive additional keys. All
devices registered with the same owner have their keys tied
to the owner’s credentials. The cloud could then offer cTPM
services that create a shared key across all devices owned by
the same user. For example, when “bob@hotmail.com” calls this
service, a shared key is automatically provisioned to the cTPM
on each of Bob’s devices. This shared key can bootstrap the data-
sharing scenarios described by this paper.

Architecture
cTPM consists of two different components: one running on
the device and the other in the cloud. Both components imple-
ment the full TPM 2.0 software stack with the additional cTPM
features. This ensures that all cloud operations made to the
cTPM strictly follow TPM semantics, and thus we do not need
to re-verify their security properties. On the device-side, the
cTPM software stack runs in the TPM chip, whereas the cloud
runs the cTPM software inside a VM. On the cloud-side, the NV
storage is regular cloud storage, and the timer offers a real-time
clock function. The cloud-side cTPM software reads the local
time upon every initialization and uses NTP to synchronize with
a reference clock. When running in the cloud, cTPM resources
(e.g., storage, clock) need not be encapsulated in hardware,
because the OS running in the VM is assumed to be trusted. In

contrast, the device’s OS is untrusted, and thus the cTPM chip
itself must be able to offer these resources in isolation from the
OS. Figure 1 illustrates the high-level architecture of the cTPM.

Shared Cloud Primary Seed
Upon starting, the local cTPM checks whether a shared cloud
primary seed is present. If not, it disables its new cTPM func-
tionality and all commands associated with it. A cTPM is
provisioned with a cloud primary seed via a proprietary interface
available only to the device manufacturer.

The cTPM uses the cloud primary seed to generate an asym-
metric storage root key, called the cloud root key (CRK), and a
symmetric communication key, called the cloud communica-
tion key (CCK). Both keys are derived from the cloud primary
seed based on use of an approved key derivation function. These
key derivations occur twice: once on the device-side and once
on the cloud-side of the cTPM. Because the key derivations are
deterministic, both the device and the cloud end up with identi-
cal key copies. The CRK’s semantics are identical to those of the
storage root key (SRK) controlled by the TPM’s owner domain.
The CRK encrypts all objects protected within the cloud control
domain (similar to how SRK encrypts all objects within the
owner domain). The CCK is specific to the cloud domain, and it
protects all data exchanged with the cloud.

Secure Asynchronous Communication
cTPM cannot directly communicate with the cloud. Instead, it
must rely on the OS for all its communication needs. Because the
OS is untrusted, cTPM must protect the integrity and confiden-
tiality of all data exchanged between the cTPM and the cloud-
backed storage, as well as protect against rollback attacks. The
OS is regarded merely as an insecure channel that forwards
information to and from the cloud.

In addition to ensuring security, cTPM must support asynchro-
nous communication between the local cTPM and the cloud.
Today, the TPM is single-threaded, and all TPM commands are
synchronous. When a command arrives, the caller blocks and
the TPM cannot process any other commands until the com-
mand terminates. Making cTPM cloud communication syn-
chronous would lead to unacceptable performance. For example,
consider issuing a cTPM command that increments a counter in
cloud-backed NV storage. This command would make the TPM
unresponsive and block until the increment update propagates
all the way to the cloud and the response returns to the local
device.

Instead, we chose to make cloud communication asynchro-
nous. Whenever a command that needs access to remote NV
is received, cTPM returns to the caller an encrypted blob that
needs to be sent remotely. The caller must send this blob to the
cloud; if the cloud accepts the blob, it returns another encrypted

Figure 1: cTPM high-level architecture

32    AU G U S T 20 14  VO L . 3 9, N O. 4 	 www.usenix.org

SECURITY
cTPM: A Cloud TPM for Cross-Device Trusted Applications

blob reply to the caller. The caller then passes this reply to the
cTPM, at which point the command completes. cTPM remains
responsive to all other commands during this asynchronous
communication with the cloud. Figure 2 illustrates these steps
and contrasts them with a traditional simple TPM command. All
cTPM commands that do not require access to remote NV stor-
age remain synchronous, similar to TPMs today.

Dealing with Connectivity Loss. Loss of connectivity is
transparent to the cTPM because all network signaling and
communication is done by the operating system. However, the
two-step nature of asynchronous commands requires the cTPM
to maintain in-memory state between the steps. This introduces
another potential resource allocation denial-of-service attack:
A malicious OS could issue many asynchronous commands
that cause the cTPM to fill up its RAM. Also, as mentioned in
our threat model, an attacker could launch a staleness attack
whereby artificial delays are introduced in the communication
with the cloud.

To protect against these attacks, cTPM maintains a global read
timeout (GRT) value. Whenever an asynchronous request is
issued, cTPM starts a timer set to the GRT. Additionally, to free
up RAM, cTPM scans all outstanding asynchronous commands
and discards those whose timers have expired. The GRT can be
set by the cTPM’s owner and has a default value of five minutes.

Cloud-Backed NV Storage
At a high level, the cloud-backed NV storage is just a key-value
store whose keys are NV indices. Accessing the remote NV
index entries requires the OS to assist with the communication
between the cTPM and the cloud. These operations are thus
asynchronous and follow the same two-step model described in
Figure 2. However, the remote nature of these NV indices raises
additional design challenges.

Local NV Storage Cache. Remote NV entries can be cached
locally in the cTPM’s RAM. To do so, we add a time-to-live
(TTL) to locally cached NV entries. The TTL specifies how long
(in seconds) the cTPM can cache an NV entry in its local RAM.
Once the TTL expires, the NV index is deleted from RAM and
must be reloaded from the remote cloud NV storage with a fresh,
up-to-date copy. The TTL controls the tradeoff between perfor-
mance and staleness for each NV index entry. Furthermore, the
local storage cache is not persistent—it is fully erased each time
the computer reboots.

For writes, the local cache’s policy is write back, and it relies
on the caller to propagate the write to the cloud NV storage. A
cTPM NV write command updates the cache first and returns
an error code that indicates the write back to the NV storage is
pending. The caller must initiate a write protocol to the cloud
NV. If the caller fails to complete the write back, the write
remains volatile, and the cTPM makes no guarantees about its
persistence.

Trusted Clock. In cTPM, the trusted clock is an NV entry
(with a pre-assigned NV index) that only the cloud can update.
The local device can read the trusted clock simply by issuing an
NV read command for this remote entry. Reading the entry is
subject to a timeout much stricter than the regular GRT, called
the global clock timeout (GCT). The trusted clock NV entry is
cached in the on-chip RAM. In this way, the cTPM always has
access to the current time by adding the current timer tick count
to the synchronization timestamp (ST) of the clock NV entry.

Detailed Design and Implementation
This section provides more detail on the cTPM’s design and
implementation. We describe how the cTPM shares TPM-pro-
tected keys between the cloud and the device, and we present the
changes made to support NV reads and writes. We also describe
the cloud/device synchronization protocol and the new TPM
commands we added to implement synchronization.

Sharing TPM-Protected Keys
The TPM 2.0 API facilitates the sharing of TPM-protected keys
by decoupling key creation from key usage. TPM2_Create(),
a TPM 2.0 command, creates a symmetric key or asymmetric
key-pair. The TPM creates the key internally and encrypts any
private (or symmetric) keys with its storage key before returning
them to the caller. To use the key, the caller must issue a TPM2_
Load() command, which passes in the public storage key and the
encrypted private (or symmetric) key. The TPM decrypts the
private key, loads it in RAM, and can begin to encrypt or decrypt
using the key.

This separation lets cTPM use cloud-created keys on the local
device to gain two benefits. First, key sharing between devices
becomes trivial. The cloud can perform the key sharing protocol

Figure 2: The sequence of steps for issuing a synchronous command (left)
versus an asynchronous command (right). The cTPM remains responsive
to other commands while the caller relays the blob to the cloud.

www.usenix.org	   AU G U S T 20 14  VO L . 3 9, N O. 4  33

SECURITY
cTPM: A Cloud TPM for Cross-Device Trusted Applications

between two cTPM VMs. Unlike TPM 2.0, this protocol does not
need to use a PKI, nor does it need to run in SEM. Once a shared
key is created, both mobile devices can load the key in their
chips separately by issuing TPM2_Load() commands. Second,
key creation can be performed even when the mobile device is
offline, greatly simplifying creating a shared key.

Accessing Cloud NV Storage
The cTPM maintains a local cache of all reads and writes made
to the cloud NV storage. A read returns a cache entry, and a write
updates a cache entry only. The cTPM does not itself update
remote cloud NV storage; instead, the caller must synchronize
the on-chip RAM cache with the cloud NV storage. This is done
using a synchronization protocol.

Read Cloud NV. Upon an NV read command, the correspond-
ing NV entry is returned from the local cache. If not found,
cTPM returns an error code. The caller must now check the
remote NV; to do so, it needs to initiate a pull synchronization
operation (described in the next section) to update the local
cache. After synchronization completes, the caller must reissue
the read TPM command, which will now be answered success-
fully from the cache.

Write Cloud NV. An NV write command first updates the
cache and returns an error code that indicates the write back
to the remote NV storage is pending. The caller must initiate a
push synchronization operation to the cloud NV (see the next
section). If the caller fails to complete the write back, the write
remains volatile, and cTPM makes no guarantees about its
persistence.

Synchronization Protocol
The synchronization protocol serves to: (1) update the local
cache with entries from the cloud-backed NV storage (for NV
reads) and (2) write updated cache entries back to the cloud-
backed NV storage (for NV writes). On the device side, the

caller performs the protocol using two new commands, TPM2_
Sync_Begin() and TPM2_Sync_End(). These commands take
a parameter called direction, which can be set to either a pull or
push to distinguish between reads and writes. All messages are
encrypted with the cloud communication key (CCK), a symmet-
ric key.

Pull from Cloud-Backed NV Storage. The cTPM first
records the value of its internal timer and sends a message that
includes the requested NV index and a nonce. The nonce checks
for freshness of the response and protects against replay attacks.
Upon receipt, the cloud decrypts the message and checks its
integrity. In response, the cloud sends back the nonce together
with the value corresponding to the NV index requested. The
cTPM decrypts the message, checks its integrity, and verifies the
nonce. If these checks are successful, cTPM performs one last
check to verify that the response’s delay did not exceed its global
read timeout (GRT) value. If all checks pass, cTPM processes the
read successfully. Figure 3 shows the precise messages exchanged
between the cTPM and the cloud to read the remote NV.

Push to Cloud-Backed NV Storage. The protocol for writing
back an NV entry is more complex because it must also handle
the possibility that an attacker may try to reorder write opera-
tions. For example, a malicious OS or application can save an
older write and attempt to reapply it later, effectively overwrit-
ing the up-to-date value. To overcome this, the protocol relies
on a secure monotonic counter maintained by the cloud. Each
write operation must present the current value of the counter
to be applied; thus, stale writes cannot be replayed. cTPM can
read the current value of the secure counter using the previously
described pull protocol. Figure 4 shows the precise messages
exchanged between the cTPM and the cloud to write a remote
NV entry. Note that reading the secure counter need not be done
on each write because the local cTPM caches the up-to-date
value in RAM.

Protocol Verification. We verified our protocols’ correctness
using an automated theorem prover, ProVerif [1], which supports
the specification of security protocols for distributed systems
in concurrent process calculus (pi-calculus). We specified our
synchronization protocol—both pull and push—in 98 lines of pi-
calculus code. ProVerif verified the security of our protocols in
the presence of an attacker with unrestricted access to the OS,
applications, or network. The attacker could intercept, modify,
replay, and inject new messages into the network (similar to the
Dolev-Yao model).

Conclusion
The traditional TPM design fails to meet the requirement of
today’s cross-device trusted applications. This paper introduces
cTPM, a cloud-enhanced design change to the traditional TPM
design that enables: (1) cryptographic keys and data to be shared

Figure 3: Synchronization protocol: pull NV entry from cloud-backed NV
storage

Figure 4: Synchronization protocol: push NV entry to cloud-backed NV
storage

34    AU G U S T 20 14  VO L . 3 9, N O. 4 	 www.usenix.org

SECURITY
cTPM: A Cloud TPM for Cross-Device Trusted Applications

across a user’s many devices, (2) a trusted clock synced with
the cloud, and (3) high-performance NV storage of unlimited
size. cTPM accomplishes these goals by only adding a cloud
seed shared between the device and the cloud. Together with the
asynchronous communication channel, the seed allows cTPM to
interact with the cloud to provide better support for cross-device
trusted applications.

References
[1] B. Blanchet, “An Efficient Cryptographic Protocol Verifier
Based on Prolog Rules,” in Proceedings of the Computer Secu-
rity Foundations Workshop, 2001.

[2] C. Chen, H. Raj, S. Saroiu, and A. Wolman, “cTPM: A
Cloud TPM for Cross-Device Trusted Applications,” in
Proceedings of the 11th USENIX Conference on Networked
Systems Design and Implementation (USENIX Association,
2014), pp. 187–201.

[3] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda,
“TrInc: Small Trusted Hardware for Large Distributed
Systems,” in Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation (USENIX
Association, 2009), pp. 1–14.

[4] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor,
and A. Perrig, “TrustVisor: Efficient TCB Reduction and
Attestation,” in Proceedings of the IEEE Symposium on Secu-
rity and Privacy, Oakland, CA, May 2010.

[5] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H.
Isozaki, “Flicker: An Execution Infrastructure for TCB Min-
imization,” in Proceedings of EuroSys, Glasgow, UK, 2008.

[6] A. Nguyen, H. Raj, S. Rayanchu, S. Saroiu, and A. Wolman,
“Delusional Boot: Securing Cloud Hypervisors without
Massive Re-engineering,” in Proceedings of EuroSys, Bern,
Switzerland, April 2012.

[7] B. Parno, J. R. Lorch, J. R. Douceur, J. Mickens, and J. M.
McCune, “Memoir: Practical State Continuity for Protected
Modules,” in Proceedings of the IEEE Symposium on Security
and Privacy, Oakland, CA, 2011.

[8] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu,
“Policy-Sealed Data: A New Abstraction for Building Trusted
Cloud Services,” in Proceedings of the 21st USENIX Security
Symposium, Bellevue, WA, 2012.

[9] E. G. Sirer, W. de Bruijn, P. Reynolds, A. Shieh, K. Walsh,
D. Williams, and F. B. Schneider, “Logical Attestation: An
Authorization Architecture for Trustworthy Computing,”
in Proceedings of the 23rd ACM Symposium on Operating
Systems Principles (SOSP), Cascais, Portugal, 2011.

[10] F. Zhang, J. Chen, H. Chen, and B. Zang, “CloudVisor:
Retrofitting Protection of Virtual Machines in Multi-Tenant
Cloud with Nested Virtualization,” in Proceedings of the 23rd
ACM Symposium on Operating Systems Principles (SOSP),
Cascais, Portugal, 2011.

