
www.usenix.org	   O C TO B ER 20 13  VO L . 3 8 N O. 5  23

Log Filtering with Rsyslog
D A V I D L A N G

David Lang is a Staff IT Engineer
at Intuit, where he has spent
more than a decade working
in the Security Department
for the Banking Division. He

was introduced to Linux in 1993 and has been
making his living with Linux since 1996. He
is an Amateur Extra Class Radio Operator
and served on the communications staff of
the Civil Air Patrol California Wing, where his
duties included managing the statewide digital
wireless network. He was awarded the 2012
Chuck Yerkes award for his participation on
various open source mailing lists.
david@lang.hm

In my first ;login: article [1], I provided an overview of how to build an
enterprise-class logging system and recommended using rsyslog as the
transport. For those who are not familiar with modern syslog daemons,

this may seem like a strange recommendation. In this article I will provide an
overview of rsyslog’s capabilities, with the focus on its filtering capabilities.
Where a traditional syslog limited you to filtering on the facility and severity
reported by the application writing the logs, rsyslog lets you filter anything in
the log message, as well as several things that are not.

Traditional Syslog
Traditional syslog messages have a facility value (the type of log it is) and a severity value
(the importance of the message). These are combined to create the priority (PRI) of the
message, which is a decimal number: PRI = Facility * 8 + Severity.

The log messages are sent between machines in the format:

<PRI>timestamp hostname syslogtag message

Normally, when the messages are written to a file, the <PRI> header is left off, so what shows
up in the file is:

timestamp hostname syslogtag message

Syslog filters (located in /etc/syslog.conf) are in the form of:

facility.severity[,facility.severity] <whitespace> action

The possible actions are

◆◆ Write to a file

◆◆ Send to a named pipe

◆◆ Send to a remote machine via UDP

◆◆ Write to a terminal/console

◆◆ Send to users

The PRI value for a message is completely determined by the application that’s creating the
message, with no protection preventing any user from writing a message claiming to be from
the kernel with a severity level of “emergency.” This allows you to use some of the predefined
system facilities for your application (say, news or UUCP), at the cost of confusing newcom-
ers to your environment. Most people expect that all non-system applications are going to
use one of the local* facilities.

An example /etc/syslog.conf file:

mail.*	 /var/log/mail.log

auth,authpriv.*	 /var/log/auth.log

.	 /var/log/messages

.	 @192.168.1.6

24    O C TO B ER 20 13  VO L . 3 8 N O. 5 	 www.usenix.org

SYSADMIN
Log Filtering with Rsyslog

Almost every program that writes to syslog allows you to specify
what facility to use, and almost none of them prevent you from
configuring anything you want. With scripts, you can use the
/usr/bin/logger command to log whatever you want.

$ logger -p kernel.emerg -t kernel -s “The system is on fire!!!”

results in a log that looks like the following and is tagged with
the facility “kernel” and the severity “emergency”:

Jul 21 19:55:43 myhostname kernel: The System is on fire!!!

Rsyslog
Rsyslog has a rapid development cycle compared to Linux
distros. As of the time of writing, most Linux distros ship with
rsyslog 5.x, while RHEL versions 6.3 and earlier ship with
rsyslog 3.22 as the default. Rsyslog 5.x became an option in
RHEL 5.9 and became the default in RHEL 6.4. Meanwhile, the
current supported version is rsyslog 7.4. As can be expected,
the current upstream versions include many features that are
not available in older versions. Adiscon, the primary sponsor of
rsyslog, development hosts repositories for the newest versions
for both RHEL/CentOS and Ubuntu packages, and several other
people maintain current packages for other systems [2].

Among the many changes in rsyslog 6.x there was a new config
syntax added. Unless stated otherwise, all examples provided in
this article have been tested with rsyslog 3.x or newer.

Rsyslog has a modular design and, in addition to the capabilities
of traditional syslog, supports many other modules that offer
many additional functions.

Input Modules accept input into rsyslog:

im3195, imdiag, imfile, imgssapi, imjournal, imklog, imkmsg,

immark, impstats, imptcp, imrelp, imsolaris, imtcp, imttcp, imudp.

imuxsock, imzmq3

Stackable Parser Modules parse or modify the data the input
modules accepted:

pmrfc3164, pmrfc5424, pmaixforwardedfrom, pmcisconames,

pmlastmsg, pmrfc3164sd, pmsnare

Message Modification Modules modify the parsed message or
create variables from the message:

mmanon, mmaudit, mmcount, mmfields, mmjsonparse, mmnormalize,

mmsnmptrapd

Output Modules deliver the message to a destination:

omelasticsearch, omgssapi, omhdfs, omhiredis, omjournal,

omlibdbi, ommail, ommongodb, ommysql, omoracle, ompgsql,

omprog, omrabbitmq, omrelp, omruleset, omsnmp, omstdout,

omtesting, omudpspoof, omuxsock, omzmq3, omfwd (tcp/udp

network delivery), omdiscard, omfile, ompipe, omshell, omusrmsg

String Generation Modules provide predefined templates such
as the following built-in templates:

RSYSLOG_DebugFormat, RSYSLOG_FileFormat,

RSYSLOG_ForwardFormat, RSYSLOG_SysklogdFileFormat,

RSYSLOG_SyslogProtocol23Format,

RSYSLOG_TraditionalFileFormat,

RSYSLOG_TraditionalForwardFormat

Compatibility with Traditional Syslog
Rsyslog supports the traditional PRI-based filtering syntax, so
if your current usage fits within this syntax, you can continue to
use it.

At startup, rsyslog needs a little more information in its config
file to tell it which input modules to load and how to configure
them, but the filtering lines can be identical.

An example /etc/rsyslog.conf equivalent to the /etc/syslog.conf
shown earlier would be:

$ModLoad imuxsock

$ModLoad imklog

$ModLoad imudp

$UDPServerRun 514

mail.*	 /var/log/mail.log

auth,authpriv.*	 /var/log/auth.log

.	 /var/log/messages

.		 @192.168.1.6

Because rsyslog has an include function, the /etc/rsyslog.conf
could be simplified to:

$ModLoad imuxsock

$ModLoad imklog

$ModLoad imudp

$UDPServerRun 514

$IncludeConfig /etc/rsyslog.conf

Several Linux distros use the line:

$IncludeConfig /etc/rsyslog.d/*.conf

to let you manage the configurations for different applications in
separate application-specific files, without having all configu-
ration information collected in the same file. There is a bug in
rsyslog 6.x and 7.0 (fixed in 7.2) that caused the included files to
be processed in reverse order. One caution with included files:
rsyslog includes all the files and then evaluates the resulting
config. This means that if you set a configuration value in one
included file, it will still be in effect for later included files.

Modification of the Outbound Message
Rsyslog also allows you to change the log message that it sends
out to any destination. You can create a format template [3] with
a config entry like:

www.usenix.org	   O C TO B ER 20 13  VO L . 3 8 N O. 5  25

SYSADMIN
Log Filtering with Rsyslog

$template strangelog,”text %hostname:::lowercase% %msg% more\n”

where the items between ‘%’ are variables (with formatting
options).

Then in your action, you can tell rsyslog to use a specific tem-
plate instead of the default template:

. /var/log/messages;strangelog

Rsyslog even lets you create a template for the filename, so you
could use a configuration like:

$template sortedlogs=”/var/log/messages-%fromhost-ip%”

. ?sortedlogs;strangelog

to write the messages to different files, with filenames in the for-
mat specified by the “sortedlogs” template, based on the source
IP address.

Variables Available
Rsyslog provides different flavors of variables for use in config
files: message property variables, trusted property variables,
message content variables, and user-defined variables.

Message Property Variables
These are items derived from the message or the connection
information, such as the timestamp within the message, the
timestamp when the message was received on the local system,
the hostname in the message, the hostname/IP of the system
that delivered the message to the local box, PRI info, etc. [4].
For rsyslog version 5 and earlier, these were the only variables
available.

Trusted Properties
Late in the 5.x series, rsyslog implemented the ability to query
the kernel to get information about the process on the other end
of the /dev/log socket (UID, PID, name of binary, command line,
etc.), so that it could log information that normal non-root user
processes cannot forge (processes running as root can still forge
this information). In rsyslog 5.x, the information could only be
appended to the log message, but with 6.x and newer, this infor-
mation can be turned into variables.

Variables Parsed from Message Content
Rsyslog version 6 introduced “message modification” modules.
These modules are allowed to modify a message after it has
been parsed, and they can be invoked as the result of a filter test.
In addition to modifying the message, these modules can also
set variables that can be used the same way that the properties
defined above are used.

The two most significant message modification modules for
creating variables are mmjsonparse and mmnormalize.

Mmjsonparse will parse a JSON-formatted message and create
a tree of variables for you to use. This was implemented to sup-
port the CEE logging standard, and requires that the JSON start
with @cee:.

These rsyslog.conf additions are needed to use this module:

$ModLoad mmjsonparse

. :mmjsonparse:

This supports multiple levels of structure: $!root!level1!level2!
etc. refers to an individual item, $! refers to the entire tree, and
$!root!level1 refers to a partial subtree.

Mmnormalize [5] lets you define a rule set for parsing messages,
and it will do a very efficient parse of the log message, creating
variables.

For example, starting with this example log message:

Jul 21 19:55:03 kernel: [1084540.211910] Denied: IN=eth0 OUT=

MAC=00:30:48:90:cc:a6:00:30:48:da:48:e8:08:00 SRC=10.10.10.10

DST=10.10.10.11 LEN=60 TOS=0x10 PREC=0x00 TTL=64 ID=28843

DF PROTO=TCP SPT=44075 DPT=444 WINDOW=14600 RES=0x00 SYN

URGP=0

and the rule file normalize.rb:

rule=: %kerntime:word% Denied: IN=%in:word% OUT=

MAC=%mac:word% SRC=%src-ip:ipv4% DST=%dst-ip:ipv4%

LEN=%len:number% TOS=%tos:word% PREC=%prec:word%

TTL=%ttl:number% ID=%id:number% %DF:word% PROTO=%proto:word%

SPT=%src-port:number% DPT=%dst-port:number%

WINDOW=%window:number% RES=%res:word% %pkt-type:word%

produces this log message:

Jul 21 19:55:49 myhostname json_msg: @cee:{ “urgp”: “0”,

“pkt-type”: “SYN”, “res”: “0x00”, “window”: “14600”, “dst-

port”: “444”, “src-port”: “51954”, “proto”: “TCP”, “DF”: “DF”,

“id”:”31890”, “ttl”: “64”, “prec”: “0x00”, “tos”: “0x10”, “len”:

“60”, “dst-ip”:”10.10.10.10”, “src-ip”: “10.10.10.11”, “mac”:

”00:30:48:90:cc:a6:00:30:48:da:48:e8:08:00”, “in”: “eth0”,

“kerntime”:”[1152127.460873]” }

You do need to add the following lines to rsyslog.conf to use this
module:

$ModLoad mmnormalize

$mmnormalizeUseRawMSG off

$mmnormalizeRuleBase /rsyslog/rulebase.rb

. :mmnormalize:

$template json_fmt,”%timereported% %hostname% json_msg: @

cee:%$!%\n”

. /var/log/test;json_fmt

26    O C TO B ER 20 13  VO L . 3 8 N O. 5 	 www.usenix.org

SYSADMIN
Log Filtering with Rsyslog

User-Defined Variables
Rsyslog versions 7 and later allow you to define your own vari-
ables in the config file in addition to the ones created by the
message modification modules. In rsyslog 7.6 there will be three
flavors of variables that you can create:

◆◆ Normal variables, which can be created by “message modifi-
cation modules” or by config statements. These are addressed
as “$!name”.

◆◆ Local variables, which cannot be set by message modification
modules. These are addressed as “$.name”.

◆◆ Global variables, which cannot be set by message modifi-
cation modules, but will persist across log messages (other
variables are cleared after every message is processed). These
are addressed as “$/name”.

Here are some examples of defining variables. Unlike other con-
fig statements, set and unset require a trailing ‘;’:

set $!user!level1!var1=”test”;

set $!user!level1!var1=$!something + 1;

unset $!user!level1;

Using Variables
One common problem that people run into when using variables
is the fact that the different types of variables were added to
rsyslog at different times, and as a result there are different ways
they are named.

The traditional message property variables have just the variable
name, such as “timereported” or “fromhost-ip”.

Other properties, mostly referring to the runtime environment
(rather than the log message), have names like “$myhostname”
or “$now”:

◆◆ Variables parsed from the message with mm modules have
names like “$!name”.

◆◆ Local variables have names like “$.name”.

◆◆ Global variables have names like “$/name”.

◆◆ When using variables, the examples usually have the classic
properties, so you see things like:

◆◆ %msg% in a template

◆◆ :msg, in a property-based filter

◆◆ $msg in a script-style config

But when you are using the other variable types, you must be
aware that the variable prefix (‘$’ ‘$!’ ‘$.’ ‘$/’) is considered part
of the variable name, not a reference to it, so you would use some-
thing like:

◆◆ * %$!portnumber% in a template

◆◆ * :$!portnumber in a property-based filter

But you only use “$!portnumber” not “$$!portnumber” in a
script-style filter or new-style config statement.

You can use “$$!portnumber” without syntax errors in some
cases, but this results in an indirect reference to something.

New Filtering Capabilities
Use Last Match
The simplest and fastest “filter” to use is the ‘&’ filter; It isn’t
really a filter because it just tells rsyslog to use the result of the
last test. If that last test matched, the ‘&’ will match as well.

This is extremely useful for cases in which you want to do sev-
eral things if a condition is met.

A common example is when you want to log all messages of
a particular type in one place, and send them off to another
system.

mail.*	 /var/log/mail.log

&	 @mailanalysis

With rsyslog version 6 and later you can use {} to group multiple
actions together, and as a result ‘&’ isn’t needed as much as it
used to be.

Mail.*	 { /var/log/mail.log

	 @mailanalysis }

Stop Processing This Log Action
When you know that you don’t want to process a log message any
longer, you can tell rsyslog to stop and not waste time checking
any further rules. This is commonly used in conjunction with
the & filter or a block of actions to prevent rsyslog from trying to
match any other filter rules after you have done what you want
with a message. Without a stop, the message will get sent to
every output that has a matching filter:

mail.*	 /var/log/mail.log

&	 @mailanalysis

&	 ~

Or with the rsyslog version 6+

Mail.* { /var/log/mail.log

 @mailanalysis

stop }

and rsyslog will stop processing this message and no other rules
will be checked. Be careful—using included config files as a stop
in one file may have an unexpected impact on the processing of
another file.

www.usenix.org	   O C TO B ER 20 13  VO L . 3 8 N O. 5  27

SYSADMIN
Log Filtering with Rsyslog

“Always” Filter
In rsyslog version 7, the config optimizer is able to identify
actions that have no filter in front of them. So instead of writing
lines like:

.	 /var/log/messages

.	 @loghost

you can just write:

/var/log/messages

@loghost

The optimizer will optimize away “always match” filters in any
case, so there is no performance penalty to continuing to write
things the traditional way.

Property-Based filters
rsyslog has long supported property-based filters [6], which are
formatted as:

:variable, [!]compare-operation, “value”

Examples of the different types are:

:programname, isequal, “sendmail” /var/log/mail.log

:msg, contains, “(root) CMD)” ~

:msg, startswith, “pam_unix” /var/log/auth.log

With property-based filters, you are no longer limited to filtering
on the PRI value that was defined in the message. You can now
filter based on the program name, or anything else in the log
message. As a result, seeing rsyslog config files that have few (if
any) PRI-based filters is common, and even those tend to be *.* or
*.severity type filters, completely ignoring the facility.

For example, to file different types of logs into different output
files, the following type of config is common:

:programname, startswith, “%ASA” /var/log/cisco-messages

& ~

:programname, startswith, “postfix” /var/log/postfix-messages

& ~

:programname, isequal, “snmpd” /var/log/snmpd-messages

& ~

:programname, isequal, “sendmail” /var/log/sendmail-messages

& ~

Script-Based Filters
Property filters can only test one thing, so rsyslog also includes
script-based filters. These are familiar looking if-then conditions.
Prior to the config optimizer that was added in rsyslog version 7,
these were slow compared to PRI filters and significantly slower
than property-based filters. In rsyslog version 7, the optimizer
makes all the different formats equivalent in speed.

Script-based filters look like [7]:

IF test THEN action [ELSE action]

where test can be an arbitrarily complex expression, with normal
precedence of operations, Boolean short-cutting, and built-in
functions.

Action can be just about any block of config statements (includ-
ing nested IF statements). Not all config items can be put into
the “then” section of a test. In general, setup type commands
(template definitions, input definitions, config parameters that
change rsyslog internals) are not allowed. Commands that do
some sort of action (set a variable, send the message to an output,
invoke message modification modules) are allowed.

The equivalent to the property filter example would be:

if $programname startswith(“%ASA”) then /var/log/cisco-messages

else if $programname startswith(“postfix”) then

 /var/log/postfix-messages

else if $programname startswith(“snmpd”) then

 /var/log/snmpd-messages

else if $programname startswith(“sendmail”) then

 /var/log/sendmail-messages

else {

 <rest of rules>

}

Array Matches
Starting in rsyslog 7.2, repeated similar tests can be greatly opti-
mized with “array” matches. Rather than having tests for many
possible matches formatted like:

if $programname == “postfix” or $programname==”exim”

 or $programname==”sendmail” then /var/log/mail.log

rsyslog now supports what it calls Array Matches.

This allows you to write the test as:

if $programname == [“postfix”,”exim”,”sendmail”] then

 /var/log/mail.log

This can be extremely powerful when you combine it with
dynamic file templates:

$template maillogs,”/var/log/mail-%programname-%severity%”

if $programname == [“postfix”,”exim”,”sendmail”] then ?maillogs

This will split the log files for mail apps into separate files for
each type of program and severity level.

28    O C TO B ER 20 13  VO L . 3 8 N O. 5 	 www.usenix.org

SYSADMIN
Log Filtering with Rsyslog

New Config Syntax
The old syntax will continue to be supported, and you can freely
mix and match between the different config syntaxes within
the same file (or included files) so you don’t have to change your
config files when you upgrade. For some of the newer functional-
ity, though, you must use the new syntax.

In the old config syntax, you must set up options and then
execute the function, while the new format looks like function
calls with many parameters.

This example is in the old syntax:

$mmnormalizeUseRawMSG off

$mmnormalizeRuleBase /rsyslog/rulebase.rb

. :mmnormalize:

Here is the equivalent config using the new syntax:

action(type=”mmnormalize” UseRawMsg=”off”

 ruleBase=”/etc/rsyslog.d/normalize.rb”)

Here’s another example using the old syntax for a more complex
action (sending a SNMP trap):

$actionsnmptransport udp

$actionsnmptarget 192.168.1.100

$actionsnmptargetport 162

$actionsnmpversion 1

$actionsnmpcommunity testtest

$actionsnmptrapoid 1.3.6.1.4.1.19406.1.2.1

$actionsnmpsyslogmessageoid 1.3.6.1.4.1.19406.1.1.2.1

$actionsnmpenterpriseoid 1.3.6.1.4.1.3.1.1

$actionsnmptraptype 2

$actionsnmpspecifictype 0

. :omsnmp:

With the new syntax, the same config appears in a much more
compact format:

action(type=”omsnmp” transport=”udp” server=”192.168.1.1”

 trapoid=”1.3.6.1.4.1.19406.1.2.1” port=”162” version=”1”

 messageoid=”1.3.6.1.4.1.19406.1.1.2.1” community=”testtest”

 enterpriseoid=”1.3.6.1.4.1.3.1.1” traptype=”2” specifictype=”0”)

On the other hand, some things are simpler with the old config.

$template strange,”some text %variable% %variable:modifiers%\n”

is significantly longer using the new syntax:

template(name=”strange” type=string

 string=”some text %variable% %variable:modifiers%\n”)

Even this simple rule in the old syntax:

. /var/log/messages;templatename

becomes longer, although a bit more obvious as to what it does,
using the new syntax:

. action(type=”omfile” File=”/var/log/messages”

 Template=”templatename”)

Choosing which syntax to use is completely up to you— use
whichever you find easier for the task at hand. Most configura-
tions will include a mix of old and new, but in general, the more
complex the configuration, the more likely you are to benefit
from the new config syntax. Prior to the config optimizer added
in rsyslog v7, PRI-based filters were by far the fastest type of
filter to use.

Example
In the first article, I recommended using recent versions of
rsyslog on the Aggregator and Analysis farm machines, so that
you can take advantage of the greatly expanded capabilities and
performance of the newer versions. One of the recommendations
that I made was to use JSON-structured messages for the trans-
port so that additional metadata could be added. The following
config files are an example of what you may want to use.

Note that in these examples, I mix old and new config styles and
make use of the “always” filter.

On all “normal” systems (app-servers, routers, switches, etc.),
deliver all messages to the Edge Aggregation servers. On *nix
systems, add an entry like the following to /etc/syslog.conf or
/etc/rsyslog.conf:

. @edge-server-for-local-network

Here is an example /etc/rsyslog.conf for an Edge Aggregator.
Note that rsyslog treats newlines as whitespace, so no line con-
tinuation characters are necessary. The exception to this is the
$template command, which needs to be on one line (but is split
here for printing):

module(load=”imuxsock” SysSock.Annotate=”on”

 SysSock.ParseTrusted=”on”)

module(load=”imklog”)

module(load=”imudp”)

input(type=”imudp” port=”514”)

module(load=”imtcp” MaxSessions=”1000”)

input(type=”imtcp” port=”514”)

module(load=”mmjsonparse”)

action(type=”mmjsonparse”)

if $fromhost-ip != “127.0.0.1” then {

 # if the log is being received from another machine,

 # add metadata to the log

 set $!trusted!origserver = $fromhost-ip;

 set $!trusted!edge!time = $timegenerated;

 set $!trusted!edge!relay = $$myhostname;

 set $!trusted!edge!input = $inputname;

www.usenix.org	   O C TO B ER 20 13  VO L . 3 8 N O. 5  29

SYSADMIN
Log Filtering with Rsyslog

} else {

 set $!trusted!local!input = $inputname;

}

set this to reflect the environment that this Edge server is

servicing

set $!trusted!environment = “Dev network”;

note the template must be on a single line

wrapping is for display only

$template structured_forwarding,

 “<%pri%>%timereported% %hostname% %syslogtag% @cee:%$!%\n”

/var/log/messages;structured_forwarding

@@core-server

#send to the core server via TCP consider using RELP instead

And here is an example configuration for the Analysis Farm
systems:

module(load=”imuxsock” SysSock.Annotate=”on”

 SysSock.ParseTrusted=”on”)

module(load=”imklog”)

module(load=”imtcp” MaxSessions=”1000”)

input(type=”imtcp” port=”514”)

module(load=”mmjsonparse”)

action(type=”mmjsonparse”)

if $fromhost-ip == “127.0.0.1” then {

 #if this is a local log, send it to an edge relay.

 set $!trusted!local!input = $inputname;

 @edge-server

 stop }

$template std,”%timereported% %hostname% %syslogtag%%$!msg%\n”

/var/log/messages;std

To demonstrate how this works, on an app-server I executed:

logger testtest

which produced this message in /var/log/messages:

Jul 24 14:51:42 app-server dlang: testtest

On the Edge Aggregator server, the log message is reformatted
and metadata is added to produce the following log entry that is
sent to the Core Aggregator (which then relays the message to all
Analysis Farms):

<13>Jul 24 14:51:42 app-server dlang: @cee:{ “msg”: “testtest”,

“trusted”: { “origserver”: “10.1.2.9”, “edge”: { “time”:

“Jul 24 21:51:42”, “relay”: “edge-server”, “input”: “imudp” },

“environment”: “Dev network” } }

Note that with the app-server set to Pacific time and the edge
server set to GMT, the timestamp when the log was created
doesn’t match when it’s received.

And, finally, on the Analysis Farm systems, the following mes-
sage will be produced in /var/log/messages:

Jul 24 14:51:42 app-server dlang: testtest

This threw away all the metadata, resulting in a message that
looks identical to what was originally generated, but the meta-
data was available for filtering decisions up to this point. And a
slightly different format on the Analysis Farm server could make
any of the metadata available to the analysis tools.

As a second demonstration, on an Edge Aggregator I again
executed:

logger testtest

Because this adds trusted properties to the message, it sends the
following log entry to the Core Aggregator:

<13>Jul 24 21:53:39 edge-server dlang: { “pid”: 4346, “uid”:

1000, “gid”: 1000, “appname”: “logger”, “cmd”: “”, “msg”:

“testtest”, “trusted”: { “local”: { “input”: “imuxsock” },

“environment”: “sending network” } }

Again, the Analysis Farm server will throw away the extra meta-
data and reformat the log to be:

Jul 24 21:53:39 edge-server dlang: testtest

But this time there was more metadata available about the process
that created the log message available prior to the final output.

In conclusion, rsyslog has tremendous flexibility in processing
your log messages. You can filter on just about anything that you
care about, and you can modify messages as you send them out to
any of the many different supported outputs.

References
[1] David Lang, “Enterprise Logging,” ;login:, vol. 38,
no. 4: https://www.usenix.org/publications/login/
august-2013-volume-38-number-4/enterprise-logging.

[2] http://www.rsyslog.com/doc/rsyslog_packages.html.

[3] http://www.rsyslog.com/doc/rsyslog_conf_templates.html.

[4] http://www.rsyslog.com/doc/property_replacer.html.

[5] http://www.rsyslog.com/doc/mmnormalize.html.

[6] http://www.rsyslog.com/doc/rsyslog_conf_filter.html.

[7] http://www.rsyslog.com/doc/rainerscript.html.

