
24    J U N E 20 14  VO L . 3 9, N O. 3 	 www.usenix.org

SYSADMINSolving Rsyslog Performance Issues
D A V I D L A N G

David Lang is a site reliability
engineer at Google. He
spent more than a decade at
Intuit working in the Security
Department for the Banking

Division. He was introduced to Linux in 1993
and has been making his living with Linux since
1996. He is an Amateur Extra Class Radio
Operator and served on the communications
staff of the Civil Air Patrol, California Wing,
where his duties included managing the
statewide digital wireless network. He was
awarded the 2012 Chuck Yerkes award for his
participation on various open source mailing
lists. david@lang.hm

R syslog is a very fast modern logging daemon, but with its capabilities
comes complexity: When things go wrong, it’s sometimes hard to tell
what the problem is and how to fix it. To continue my series of log-

ging articles [1], this time I will be talking about how to troubleshoot perfor-
mance issues with rsyslog.

Common Bottlenecks and Solutions
By far, the most common solution to poor performance is to upgrade to the current version of
rsyslog. Performance is considered a key feature of rsyslog, and the improvements from one
major version to another can be drastic. In many common rulesets, going from 5.x to 7.x has
resulted in >10x performance improvements.

The next most common performance bottleneck is name resolution. Rsyslog will try to do
a reverse lookup for the IP of any system sending it log messages. With v7, it will cache the
results, but if your name lookups time out, this doesn’t help much. If you cannot get a fast
name server or put the names into /etc/hosts, consider disabling DNS lookups with the -x
command line flag.

For people using dynamically generated file names, a very common problem is failing to
increase the number of filehandles that rsyslog keeps open. Historically, rsyslog keeps only
ten dynamically generated output files open per action. If you commonly have logs arriving
for more than this small number, rsyslog needs to close a file (flushing pending writes), open
a new file, and write to that file for each new log line that it’s processing. To fix this, set the
$DynaFileCacheSize parameter to some number larger than the number of files that you
expect to write to (and make sure your filehandle limits allow this).

The last of the common bottlenecks is contention on the queues. If every thread access-
ing the queue locks it for every message, it’s very possible for contention for the queue logs
to become a significant bottleneck. In v5, rsyslog gained the ability to process batches of
messages, and over time more modules have been getting updated to support this mode. The
default batch size ($ActionQueueDequeueBatchSize) was initially 16 messages at a time;
however, on dedicated, central servers, it may be appropriate to set this limit much higher.
In v8, the default is being changed to 1024, and even more may be appropriate on a dedicated
server. The benefit of increasing this number tapers off with size, but setting it to 1024 or so
to see if there is a noticeable difference is a very reasonable early step. The discussion below
will help you determine if you want to go further.

Rsyslog and Threads
Beyond these most common causes, things get more difficult. It is necessary to track down
what is actually the bottleneck and address it. This task is complex because rsyslog makes
heavy use of threads to decouple pieces from each other and to take advantage of modern
systems, but this structure also provides some handles to use to track down the issues.

Each input to rsyslog is through one or more threads, which gather the log messages and add
them to the main queue. Worker threads then pull messages off the main queue and deliver
them to their destinations and/or add the message to an action queue. If there are action

www.usenix.org	   J U N E 20 14  VO L . 3 9, N O. 3  25

SYSADMIN
Solving Rsyslog Performance Issues

queues, each one has its own set of worker threads pulling from
the action queue and delivering to the destinations for that action.

If a worker is unable to deliver messages to a destination, all
progress of that queue will block until that delivery is able to suc-
ceed (or it hits the retry limit and permanently fails). If you don’t
want this to block all log processing, you should make an action
queue for that destination (or group of destinations).

As an example, I’ll show a basic configuration that accepts
logs from the kernel and from /dev/log, writes all the messages
locally, and delivers them via TCP to a remote machine.

Legacy config:

$ModLoad imklog

$modLoad imuxsock

$SystemLogRateLimitInterval 0

$SystemLogSocketAnnotate on

. /var/log/messages

. @@192.168.1.1:514

Version 7 and later config:

module(load=”imklog”)

module(load=”imuxsock” SysSock.RateLimit.Interval=”0”

  SysSock.Annotate=”on”)

action(type=”omfile” File=”/var/log/messages”)

action(type=”omfwd” Target=”192.168.2.11” Port=”10514”

  Protocol=”tcp”)

This will create three threads in addition to the parent “house-
keeping” thread. Figure 1 shows the data flow through rsyslog.
The threads do not communicate directly with each other, and
no one thread “owns” the queue. The housekeeping thread isn’t
shown here, because it doesn’t have any role in the processing of
log messages.

With top, you can see these threads by pressing H, and with ps,
you can see these as well:

ps -eLl |grep c̀at /var/run/rsyslogd.pid`

5 S 0 758 1 758 0 80 0 - 18365 poll_s ? 00:00:00 rsyslogd

1 S 0 758 1 763 0 80 0 - 18365 poll_s ? 00:00:05

  in:imuxsock

1 S 0 758 1 764 0 80 0 - 18365 syslog ? 00:00:00 in:imklog

1 S 0 758 1 765 0 80 0 - 18365 futex_ ? 00:00:02 rs:main

  Q:Reg

argv[0] is changed to tag each thread with what it’s doing. This
lets you see if any of the threads are pegging the CPU, or if the
main Q worker thread is just doing nothing.

This is, of course, a “Hello World” configuration, but it shows
some of the types of issues that are common for people to run
into in larger setups. For example, this configuration is depen-
dent on a remote system; if that system is down, no local logs will
be processed and we will see logs queue up and eventually fill the
queue, causing programs trying to write logs to block. If we want
to continue logging locally, even if the remote system is down,
we can create a default-sized action queue for the TCP output
action. To handle longer outages, or restarts of rsyslog, the queue
can be disk backed. A full discussion of queue configuration and
management is a topic that will require its own article.

Legacy config:

$ModLoad imklog

$modLoad imuxsock

$SystemLogRateLimitInterval 0

$SystemLogSocketAnnotate on

. /var/log/messages

$ActionQueueType FixedArray

. @@192.168.1.1:514

Version 7 config:

module(load=”imklog”)

module(load=”imuxsock” SysSock.RateLimit.Interval=”0”

  SysSock.Annotate=”on”)

action(type=”omfile” File=”/var/log/messages”)

action(type=”omfwd” Target=”192.168.2.11” Port=”514”

  Protocol=”tcp” queue.type=”FixedArray”)

Now, you can see an additional queue worker for the action
queue:

ps -eLl |grep c̀at /var/run/rsyslogd.pid`

5 S 0 458 1 458 0 80 0 - 20414 poll_s ? 00:00:00 rsyslogd

1 S 0 458 1 462 0 80 0 - 20414 poll_s ? 00:00:00 in:imuxsock

1 S 0 458 1 463 0 80 0 - 20414 syslog ? 00:00:00 in:imklog

5 S 0 458 1 464 0 80 0 - 20414 futex_ ? 00:00:00

  rs:main Q:Reg

1 S 0 458 1 465 0 80 0 - 20414 futex_ ? 00:00:00

  rs:action   2 que

Figure 1: The flow of logs in a basic rsyslog configuration

26    J U N E 20 14  VO L . 3 9, N O. 3 	 www.usenix.org

SYSADMIN
Solving Rsyslog Performance Issues

With v7+, you can add a parameter to name the queue:

action(name=”send_remote” type=”omfwd” Target=”192.168.2.11”

  Port=”514”

  Protocol=”tcp” queue.type=”FixedArray”)

This changes the data flow to what you see in Figure 2, and the
ps/top display shows the additional threads as well:

ps -eLl |grep c̀at /var/run/rsyslogd.pid`

5 S 0 971 2807 971 0 80 0 - 20414 poll_s ? 00:00:00

  rsyslogd

1 S 0 971 2807 972 0 80 0 - 20414 poll_s ? 00:00:00

  in:imuxsock

1 S 0 971 2807 973 0 80 0 - 20414 syslog ? 00:00:00

  in:imklog

5 S 0 971 2807 974 0 80 0 - 20414 futex_ ? 00:00:00

  rs:main Q:Reg

1 S 0 971 2807 975 0 80 0 - 20414 futex_ ? 00:00:00

  rs:send_remote:

Keeping track of all the pieces can be a bit difficult when you
have multiple queues in use.

Through the rest of the article, I will just give the v7 format
because of the increasing complexity of specifying options with
the legacy config style. Not all of the features described are going
to be available on older versions.

Although ps/top lets you see how much CPU is being used by the
threads, it doesn’t tell you what is being done. Rsyslog includes
the impstats module, which produces a lot of information about
what’s going on inside rsyslog.

To load impstats, add the following line to the top of your config
file (it needs to be ahead of many other configuration param-
eters, so it’s easiest to make it the very first line).

module(load=”impstats” interval=”60” resetCounters=”on”

  format=”legacy”)

This statement will create a set of outputs every minute, reset-
ting counters every time, which makes it very easy to see if a
queue is backing up. A sample output looks like the following
(timestamp and hostname trimmed for space):

rsyslogd-pstats: imuxsock: submitted=3 ratelimit.discarded=0

  ratelimit.numratelimiters=2

rsyslogd-pstats: action 1: processed=4 failed=0

  suspended=0 suspended.duration=0 resumed=0

rsyslogd-pstats: send_remote: processed=4 failed=0

  suspended=0 suspended.duration=0 resumed=0

rsyslogd-pstats: resource-usage: utime=1536 stime=60107

  maxrss=1280 minflt=386 majflt=0

  inblock=0 oublock=0 nvcsw=22 nivcsw=32

rsyslogd-pstats: send_remote: size=0 enqueued=4 full=0

  discarded.full=0 discarded.nf=0

maxqsize=1

rsyslogd-pstats: main Q: size=5 enqueued=9 full=0

  discarded.full=0

   discarded.nf=0 maxqsize=5

You can use an automated analyzer to find the most common
types of problems. Upload your pstats logs to http://www.rsyslog
.com/impstats-analyzer/, and the script will highlight several
common types of problems.

If you are using JSON-formatted messages, you can change for-
mat from “legacy” to “cee” and then use the mmjsonparse module
to break this down into individual variables for analysis. In this
format, the logs look like:

rsyslogd-pstats: @cee: {“name”:”imuxsock”,”submitted”:7,

  “ratelimit.discarded”:0,”ratelimit.numratelimiters”:3}

rsyslogd-pstats: @cee: {“name”:”action 1”,”processed”:8,

  “failed”:0,”suspended”:0, “suspended.duration”:0,

  ”resumed”:0}

rsyslogd-pstats: @cee: {“name”:”action 2”,”processed”:8,

  “failed”:0,”suspended”:0, “suspended.duration”:0,

  ”resumed”:0}

rsyslogd-pstats: @cee: {“name”:”send_remote”,”processed”:8,”

  failed”:0, “suspended”:0, “suspended.duration”:0,

  ”resumed”:0}

Figure 2: The flow of logs when an action queue is added to preventing
blocking

www.usenix.org	   J U N E 20 14  VO L . 3 9, N O. 3  27

SYSADMIN
Solving Rsyslog Performance Issues

rsyslogd-pstats: @cee: {“name”:”resource-usage”,”utime”:2917,

  “stime”:3237,”maxrss”:1520, “minflt”:406,”majflt”:0,”inblock”:0,

  “oublock”:0,”nvcsw”:30,”nivcsw”:6}

rsyslogd-pstats: @cee: {“name”:”send_remote”,”size”:0,

  ”enqueued”:8,

   “full”:0,”discarded.full”:0, “discarded.nf”:0,”maxqsize”:1}

rsyslogd-pstats: @cee: {“name”:”main Q”,”size”:6,”enqueued”:14,

  ”full”:0, “discarded.full”:0,”discarded.nf”:0,”maxqsize”:6}

So far, you’ve just put the pstats logs into the main queue along
with all the other logs in the system. If something causes that
queue to back up, it will delay the pstats logs as well.

There are two ways to address this: First, you can configure
rsyslog to write the pstat logs to a local file in addition by adding
the log.file=“/path/to/local/file” parameter to the module load
line. The second approach is a bit more complicated, but it serves
to show an example of another feature of rsyslog—rulesets and
the ability to bind a ruleset to a specific input.

Take the example config and extend it to be the following:

module(load=”impstats” interval=”10” resetCounters=”on”

  format=”legacy” ruleset=”high_p”)

module(load=”imklog”)

module(load=”imuxsock” SysSock.RateLimit.Interval=”0”

  SysSock.Annotate=”on”)

action(type=”omfile” File=”/var/log/messages”)

action(name=”send_remote” type=”omfwd” Target=”192.168.2.11”

  Port=”514” Protocol=”tcp”queue.type=”FixedArray”)

ruleset(name=”high_p” queue.type=”FixedArray”){

  action(type=”omfile” File=”/var/log/pstats”)

  action(name=”send_HP” type=”omfwd” Target=”192.168.2.11”

   Port=”514”

    Protocol=”tcp” queue.type=”FixedArray”)

}

All pstat log entries will now go into a separate “main queue”
named “high_p” with its own worker thread and its own separate
queue to send the messages remotely. This is effectively the same
as starting another stand-alone instance of rsyslog just to process
these messages. There is no interaction (other than the house-
keeping thread) between the threads processing the pstat mes-
sages and the threads processing other messages (see Figure 3).

ps -eLlww |grep c̀at /var/run/rsyslogd.pid`

5 S 0 827 2807 827 0 80 0 - 31181 poll_s ? 00:00:00 rsyslogd

5 S 0 827 2807 828 0 80 0 - 31181 poll_s ? 00:00:00

  in:impstats

1 S 0 827 2807 829 0 80 0 - 31181 syslog ? 00:00:00 in:imklog

1 S 0 827 2807 830 0 80 0 - 31181 poll_s ? 00:00:00

  in:imuxsock

5 S 0 827 2807 831 0 80 0 - 31181 futex_ ? 00:00:00

  rs:main Q:Reg

1 S 0 827 2807 832 0 80 0 - 31181 futex_ ? 00:00:00

  rs:send_remote:

5 S 0 827 2807 843 0 80 0 - 31181 futex_ ? 00:00:00

  rs:high_p:Reg

1 S 0 827 2807 844 0 80 0 - 31181 futex_ ? 00:00:00

  rs:send_  HP:Reg

Pstats output also shows the additional queues:

rsyslogd-pstats: imuxsock: submitted=0 ratelimit.discarded=0

  ratelimit.numratelimiters=0

rsyslogd-pstats: action 1: processed=0 failed=0 suspended=0

  suspended.duration=0 resumed=0

rsyslogd-pstats: send_remote: processed=0 failed=0

  suspended=0 suspended.duration=600 resumed=0

rsyslogd-pstats: action 3: processed=10 failed=0 suspended=0

  suspended.duration=0 resumed=0

rsyslogd-pstats: send_HP: processed=10 failed=0 suspended=0

  suspended.duration=600 resumed=0

rsyslogd-pstats: resource-usage: utime=26978 stime=26416

  maxrss=2056 minflt=857 majflt=0 inblock=0 oublock=400

  nvcsw=412 nivcsw=11

rsyslogd-pstats: send_remote: size=0 enqueued=0 full=0

  discarded.full=0 discarded.nf=0 maxqsize=2

rsyslogd-pstats: send_HP: size=0 enqueued=10 full=0 discarded.

  full=0 discarded.nf=0 maxqsize=10

rsyslogd-pstats: high_p: size=8 enqueued=10 full=0 discarded.

  full=0 discarded.nf=0 maxqsize=10

rsyslogd-pstats: main Q: size=0 enqueued=0 full=0 discarded.

  full=0 discarded.nf=0 maxqsize=2

Once you find the actual bottleneck in your configuration, what
can you do about it? It boils down to a two-pronged attack.

Figure 3: The flow of logs through the threads and queues with impstats
bound to a ruleset

28    J U N E 20 14  VO L . 3 9, N O. 3 	 www.usenix.org

SYSADMIN
Solving Rsyslog Performance Issues

Use More Cores to Perform the Work
This approach is tricky. In many cases enabling more worker
threads will help, but you will need to check the documentation
for the module that is your bottleneck to find what options you
have. In many cases, the modules end up needing to serialize
(e.g., you only want one thread writing to a file at a time), and if
your bottleneck is in one of these areas, just adding more work-
ers won’t help. Writing to a file can be split up by moving most of
the work away from the worker thread that is doing the testing of
conditions, using a second thread to format the lines for the file,
and, if needed, using a third thread to write the data to the file,
potentially compressing it in the process.

Restructure the Configuration to Reduce the
Amount of Work
This approach involves standard simplification and refactoring
work for the most part. Rsyslog has lots of flexibility in terms of
what modules can be written to do; so, in an extreme case, a cus-
tom module may end up being written to address a problem. In
most cases, however, it’s simplifying regex expressions, refactor-
ing to reduce the number of tests needed or to make it easier for
the config optimizer to detect the patterns. Like most program-
ming, algorithmic changes usually produce gains that dwarf
other optimization work, so it’s worth spending time looking at
ways to restructure your configuration.

Some Examples of Restructuring
If you have several actions that are related to one destination,
instead of creating a separate queue for each action, you can cre-
ate a ruleset containing all the actions, and then call the ruleset
with a queue.

ruleset(name=”rulesetname” queue/type=”FixedArray”){

  action(type=”omfwd” Target=”192.168.2.11” Port=”514”

   Protocol=”tcp”)

}

Then, in the main ruleset, you can replace the existing actions
with:

call rulesetname

A ruleset can contain any tests and actions that you can have in a
normal rsyslog ruleset, including calls to other rulesets.

With the v7 config optimizer, zero overhead is incurred in using
a ruleset that doesn’t have a queue, so you can also use rulesets to
clarify and simplify your rulesets. If you find that you have a lot
of format rules:

if $hostname == “host1” and $programname = “apache” then {

  /var/log/apache/host1.log

  stop

}

if $hostname == “host1” and $programname = “apache” then {

  /var/log/postfix/host2.log

  stop

}

if $hostname == “host2” and $programname = “postfix” then {

  /var/log/apache/host1.log

  stop

}

if $hostname == “host2” and $programname = “postfix” then {

  /var/log/postfix/host2.log

  stop

}

/var/log/other-logs

you can simplify it into:

$template multi_test=‘/var/log/%programname%/%hostname%.log’

ruleset(name=”inner_test”){

  if $programname == “apache” then {

   ?multi_test

   stop

  }

  if $programname == “postfix” then {

   ?multi_test

   stop

  }

}

if $hostname = “host1” then call inner_test

if $hostname = “host2” then call inner_test

/var/log/other-logs

This change defines a template to be used for the file name to
be written to (the Dynafile capability mentioned earlier), then
defines a ruleset to use—similar to a subroutine that checks that
the program name is one of the known ones. If so, it writes the
log out to a file whose name is defined by the template and stops
processing the log message. Then, finally, you go through a list
of hosts. If the host is known, you call the ruleset subroutine
to check the program name. If either the hostname or program
name is not in your list of known entities, then the tests will not
match and the stop action will never be reached, resulting in the
log entry being put into the /var/log/other-logs file.

This specific case can be simplified further by using the rsyslog
array match capability. This approach requires that the entries
to be matched in the array be sorted, but it can further reduce the
configuration size and speed up the processing.

www.usenix.org	   J U N E 20 14  VO L . 3 9, N O. 3  29

SYSADMIN
Solving Rsyslog Performance Issues

$template multi_test=‘/var/log/%programname%/%hostname%.log’

ruleset(name=”inner_test”){

  if $programname == [“apache”, “postfix”] then {

   ?multi_test

   stop

  }

}

if $hostname = [“host1”,”host2”] then call inner_test

/var/log/other-logs

When troubleshooting performance problems with rsyslog,
usually the biggest problem is finding where the bottleneck is;
once the bottleneck is found, it’s usually not that complicated to
remove it. Something can always be done. In extreme conditions,
it’s even possible to use a custom module to do extensive string
processing that is expensive to do in the config language. You
can always ask for help on the rsyslog-users mailing list at
rsyslog@lists.adiscon.com; the volunteers there are always
interested in new problems to solve.

Reference
[1] Links to previous articles by David Lang about logging:
https://www.usenix.org/login/david-lang-series.

Do you know about the USENIX Open Access Policy?

www.usenix.org/annual-fund

USENIX is the first computing association to offer free and open access to all of our
conferences proceedings and videos. We stand by our mission to foster excellence and
innovation while supporting research with a practical bias. Your financial support plays a
major role in making this endeavor successful.

Please help to us to sustain and grow our open access program. Donate to the USENIX
Annual Fund, renew your membership, and ask your colleagues to join or renew today.

