
30    AU G U S T 20 13  VO L . 3 8 N O. 4 	 www.usenix.org

SYSADMINEnterprise Logging
D A V I D L A N G

David Lang is a Staff IT Engineer
at Intuit, where he has spent
more than a decade working
in the Security Department
for the Banking Division. He

was introduced to Linux in 1993 and has been
making his living with Linux since 1996. He
is an Amateur Extra Class Radio Operator
and served on the communications staff of
the Civil Air Patrol California Wing, where his
duties included managing the statewide digital
wireless network. He was awarded the 2012
Chuck Yerkes award for his participation on
various open source mailing lists.
david@lang.hm

W hen the topic of logging comes up, logs are generally recognized
to be useful and that having a centralized log system is “industry
best practice,” and it’s even required by most regulatory oversight

plans (PCI, HIPAA). But figuring out how to get started in setting up a good
logging system is hard, especially if you are already a good size organization
when the topic is raised. If you start off by talking to vendors, getting quotes
in the seven figure range is easy. This article is an introduction to logging,
outlining an inexpensive architecture that can scale up to large log volumes,
and providing pointers to a few basic tools to quickly and cheaply get value
out of the logs beyond just satisfying audit requirements. Future articles will
dive deeper into specific aspects of logging.

Benefits of an Enterprise Logging Plan
Getting started with logging in an enterprise can be as much a political/management issue
over the effort and equipment involved as it is a technical issue of deciding what to do, so it’s
worth starting the discussion by reviewing the basic business benefits.

Logs record what happened. This seems like a trivial statement, but it’s easy to get confused
and think that logs mean more. Many things can go wrong, and having logs available helps
you figure out what so that you can decide how to recover and prevent it from happening
again. Examples of problems that you may need to investigate are misbehaving software,
outside attacks, insider tampering, hitting system performance limits, and hardware failures
(disk/memory/network errors).

Logs let you figure out how frequently things have happened, and this information can be
used for utilization reports and capacity planning. Logs can also be analyzed to produce
reports that show user behavior , which can then be used for marketing, product develop-
ment, and detecting “odd” behavior that may indicate attacks. Logs can satisfy audit require-
ments by indicating who did what and when they did it (for both internal and external users).

Logs are invaluable for monitoring. Nothing can replace what the apps report about their
own operations. If an app logs a message at 3:02 a.m. “unable to create file X No space left on
device,” saying that there’s no problem does you no good because Nagios reported lots of disk
space available at 3:00 and 3:10.

Collect Log Messages in a Single, Centralized Infrastructure
You most care about logs when something is (or has gone) wrong on the box where they were
generated. Having a copy of the logs elsewhere lets you still see the logs. With cloud comput-
ing, this is even more critical than in a normal datacenter because a system is far more likely
to go down, and when it does, you may never be able to get at its file system again.

By combining all the logs, you gain the ability to see what’s happening across systems, to
offload the log analysis from the systems that are serving your users, and to implement your
tools and policies consistently across the enterprise. Protecting the logs from tampering if
they’re in one place rather than on every system is far easier.

www.usenix.org	   AU G U S T 20 13  VO L . 3 8 N O. 4  31

SYSADMIN
Enterprise Logging

Most compliance programs (PCI, HIPAA, etc.) require that
you collect your logs in some central location. They don’t say
why, but the underlying reasons boil down to the advantages
mentioned above.

You Should Try to Gather ALL Possible Log Messages
Because your logs are a record of what happened on your systems
at some time in the past, you are usually not going to have a
chance to tweak the logs to support the current problem you are
dealing with. Some logs are more important than others, but you
can always throw away or ignore logs that you have gathered,
whereas you cannot go back in time and collect something that
you didn’t gather.

You should start with the premise that you will gather every log
generated by every device, system, and application and only trim
back if you find that you cannot support this. You cannot and
should not process every log message the same way. Today’s sys-
tem performance is such that everyone except the largest com-
panies can gather their logs into a single feed at a surprisingly
low cost. Analyzing logs can be very expensive, so you will want
to filter the logs as they go into your analysis tools, but different
types of analysis will want different logs, so start off planning to
gather everything.

Getting Started
Once you have decided to build an Enterprise-wide centralized
logging system, you must determine the requirements you need
it to satisfy.

Suggested Requirements for Enterprise Logging
System
Vendor-Neutral Infrastructure
A good logging system will end up being used by just about every
part of your organization. Any system you deploy is going to need
to be changed at some point. If you build your logging infrastruc-
ture around a single vendor, changing it will be extremely pain-
ful. If you build it around standards, you can switch out portions
of it at a time. While you are in the middle of migrating, you may
not be able to take advantage of some features that only exist in
one software package, but this will just temporarily degrade the
system, not split it into two parallel systems.

Gather/Deliver the Logs in Near-Real Time
Many uses of logs require that you act on the logs shortly after
they are generated. Any scheme that gathers logs nightly or
hourly will not work for those uses, but if you gather the logs in
near-real time you can support all the uses that will work with
the batched gathering.

Run All Systems on the Same Time Zone
Running all your systems on UTC time is best, but even if you
just pick the time zone of your main datacenter or office and use

that everywhere, you are far better off than if each datacenter
has systems running in its local time zone.

In theory this isn’t a problem because all timestamps should
include time zone information, but in practice, time zone infor-
mation is frequently dropped; having timestamps from differ-
ent time zones will confuse analysis of logs (including manual
analysis).

The reason UTC is better than local time is that when rolling
logs, storing them with filenames that have the timestamp as
part of the filename is common; backwards adjustments due to
daylight savings will cause you to overwrite and lose log files.

Fix Malformed Logs
Many devices (for example, Cisco Routers) have errors in logs
that they send out. Fixing these errors early in the logging infra-
structure makes it much easier to make use of the logs.

Add/Correct Log Metadata
Examples of metadata that can be useful to add/fix in log mes-
sages are timestamps, sources, and the office a log comes from.
If you are in an enterprise large enough to have hostnames and
IP addresses reused in different areas (e.g., think of how many
workers who are telecommuting from home offices will be using
192.168.1.x IP addresses), adding additional information to the
log message to be able to differentiate the duplicates can be
extremely valuable.

No Modification Is Possible on Network Equipment and
Appliances
This is less a requirement than a recognition of the reality that
you cannot change how some devices send logs, so any scheme
that requires that you run specific software on the system that’s
generating the log message cannot work as an enterprise-wide
approach, no matter how well it works in a narrower deployment.

Minimize Configuration, Non-Default Software, and Load
on the Systems Generating the Logs
While logs are valuable, if logging or administration of logging
interferes significantly with the primary purpose of a device,
odds are that the logging is going to suffer. The more work you
have to do on each system, the higher the odds that the work isn’t
going to happen consistently, and you will end up with a gap in
your logs that you are not aware of. Knowing that you are not
receiving something that you would like to get is hard.

“Best Effort” Delivery of Logs
When you first think of the question “under what conditions is
it OK to lose a log message,” the normal reaction is “never.” The
problem with this is that the alternative to losing a log message
when something goes wrong is to have the system stop. So the
real question you must ask is, “Is this log message so critical that
I would rather have the process/system stop working than have
any possibility of losing the message?”

32    AU G U S T 20 13  VO L . 3 8 N O. 4 	 www.usenix.org

SYSADMIN
Enterprise Logging

The answer to this is almost always “No, but I really would like
to avoid losing logs if I can”; the rest of this article assumes that
this is the case. There are ways to use modern logging daemons
to deal with the ultra-reliable logging requirement (what I call
“audit grade” logs), but it complicates the system and has horrible
effects on performance (I have run tests in which I have mea-
sured greater than 1000x difference between “audit grade” and
“best effort” performance).

Syslog, the De Facto Standard for Log Processing
The traditional UNIX tool for logs is syslog. Any log processing
tool that has any pretension of being a general purpose tool is
able to handle syslog messages. This makes syslog an obvious
starting point; however, syslog has a poor reputation as a serious
log tool because the versions of syslog that were the default on
UNIX systems for the first couple of decades of syslog’s exis-
tence have had a combination of ultra-safe and ultra-unsafe
defaults that have limited log rates from tens to low hundreds of
logs per second, truncated messages at 1k characters, and either
blocked system operation or silently dropped logs beyond these
rates. Additionally, filtering in traditional syslog was complex
and dependent on the originator of the log messages properly tag-
ging each message; however, current logging daemons bear about
as much resemblance to the traditional syslog that Eric Allman
created as a quick hack for dealing with Sendmail logs as the
cars in a Barrett-Jackson auction have with the cars that were
on a Ford dealer’s lot in the heyday of the Model T. Most people,
including many who deal with logs, do not realize that this has
changed. There are now several additional logging implementa-
tions available for use, all of which are drastic improvements in
performance and capability compared to the traditional syslog
software, while still retaining software and network compat-
ibility with traditional syslog. Since 2007, most Linux distros
have switched to rsyslog as their default syslog daemon, and the
rate of change over the past five years is staggering. Red Hat
Enterprise 5.x ships with rsyslog3.22.2, but rsyslog 7.4 rolled out
in June 2013. Additionally, syslog-ng, nxlog, and logstash are all
free tools to consider if you dislike rsyslog. (Commercial syslog
daemons, including a commercial version of syslog-ng, are also
available.) Both rsyslog and syslog-ng now can handle more than
one million logs per second, and all of these tools support a wide
range of filtering and communication options. Combined with
the fact that these all support the traditional syslog protocols
means that you can choose whichever one you want, and switch
from one to the other on your core infrastructure without having
to change anything on your systems that are generating the logs.

As a logging protocol, syslog has the (dis)advantage that histori-
cally it has been poorly defined. Syslog has been around since the
‘80s with an RFC written for it in 2001 (and a follow-up in 2009),
but the reality remains that you can throw just about anything
at syslog and it will handle it in some form. This leads to the

natural result that a lot of equipment (including from top name
vendors) and software is generating syslog messages that don’t
comply with any RFC, but the modern logging daemons are all
flexible enough to be able to deal with the messages in a (rela-
tively) sane manner. This great flexibility means that syslog is
easy to get data into, and can deal with just about anything.

A recent development in the syslog world is the support across
the many different logging daemons for JSON-structured logs.
While this is primarily being driven by people who dream that
all logs will be formatted to some standard, making it trivial for
any application to parse and understand the log contents, this
capability is absolutely wonderful for enterprise logging even
if no such standard ever emerges [1]. This is because it makes it
possible to take the original unstructured syslog message, wrap
it in JSON and then add additional fields to hold information to
the log message that is sent upstream. This maintains the sepa-
ration between the original message and the new fields, allowing
you to hand the original message to an analysis tool that doesn’t
know about the new fields or format. This added information
can include, for example, the environment the log was generated
in, so that you can alert differently depending on whether the
log was generated from a development machine or a production
machine without needing separate logging systems.

Architecture

The architecture should be able to handle a large enterprise with
hundreds of thousands of systems across multiple datacenters.
Smaller organizations can collapse the different layers in Figure
1 if appropriate. All of this infrastructure can be virtualized or
cloud based, but performance or data sensitivity concerns may
cause your organization to decide that parts of it should be kept
in-house.

The Log Originators
Log Originators are all your normal servers, appliances, storage
devices, switches, routers, firewalls, etc. These systems all send
their logs to the closest Edge Aggregation systems, usually via
UDP syslog.

For applications that cannot send their logs directly to syslog,
you have several options to watch and scrape the logs from files

Figure 1: The best design for an enterprise logging infrastructure is divided
into four main layers, which serve as clear boundaries between the logging
responsibilities of the different systems in your enterprise.

www.usenix.org	   AU G U S T 20 13  VO L . 3 8 N O. 4  33

SYSADMIN
Enterprise Logging

to send them upstream. The syslog daemons mentioned above all
have some capability to gather logs from local files, plus there are
other, simpler tools that can do the job.

Noting that all the systems that you use for the rest of your
logging infrastructure are also Log Originators and should
be sending their locally generated log messages off to an Edge
Aggregation system is important.

The Edge Aggregators
Edge Aggregation systems perform many different tasks: gather
logs from local machines, fix malformed logs and add metadata,
and queue logs as needed for reliable delivery to Core Aggrega-
tion systems.

Gather Logs From All Local Machines
There are many edge systems, distributed around the organiza-
tion. The number of Edge Aggregation systems you deploy is a
balancing act involving cost, complexity (the number of systems
to manage), load on each system, and the reliability of delivering
logs to the Edge Aggregators from your other systems.

◆◆ The closer the Edge systems are to the systems generating the
logs, the more reliable your logs are going to be. While UDP
syslog is extremely reliable over a local LAN switch, once you
start sending it through links that can be bottlenecks (routers,
firewalls, WANs, etc.), the chance of losing logs due to conges-
tion, equipment failure, routing errors, ACL errors, etc. starts
climbing rapidly.

In theory the answer is to use a more reliable transport than
UDP syslog; however, many systems and appliances can only talk
UDP syslog, so even if you change all your servers to a more reli-
able transport, you have only solved part of the problem. Deploy-
ing the Edge Aggregation systems close to the sources of the logs
in HA pairs will let you survive system and network failures and
congestion with the minimum loss of logs. The Heartbeat and
Pacemaker projects [2] provide the tools to make implementing
HA on a pair of Linux systems trivial.

At the very least, you should have Edge Aggregators before any
WAN hops. I try hard to have a set of Edge Aggregation systems
connected so that logs never have to go through a router or fire-
wall before they will hit an Edge Aggregation system. In some
extreme cases, I have used Edge Aggregation systems that have
as many as 22 Ethernet ports on them (5x 4-port cards plus 2 on
the motherboard) to allow me to connect directly to the different
networks.

Fix Malformed Logs/Add Metadata
Fixing the logs and adding metadata should be done as close to the
source of the logs as possible. There are several reasons for this:

◆◆ It limits the scope of one-off fixes that you may need to do for
particular devices.

◆◆ Testing every message to see whether it needs to be fixed is
expensive. Modifying a message is less expensive, but still not
free. Doing this on the Edge Aggregators scales well.

◆◆ The Edge Aggregators know the actual source IP of the Log
Originators, while systems further on only know what’s in the
message.

◆◆ The Edge Aggregators can have hard-coded values based on
where they are in the network.

Queue Logs for Reliable Delivery to Core Aggregation
Systems
Because there are relatively few Edge Aggregation systems, any
effort you spend on them has a much higher cost-benefit ratio
than work done on the Log Origination systems. Because these
systems do not have to be used for anything else, you can replace
your OS defaults with newer or different versions of logging
software, and they can afford to expend more effort to deliver
messages. If the messages are being delivered over a WAN link
that goes down, these systems are perfectly positioned to queue
messages to be delivered later. This is not mandating full “audit
grade” reliability, but simply using one of the network protocols
that will detect outages such as TCP syslog or Reliable Event
Logging Protocol (RELP). Think about the safety of the links
you are sending the logs over; you may want to encrypt the data
before it is sent.

The Core Aggregation System
This farm of Edge Aggregator systems handles your entire log
feed. Its purpose is to provide a single logical destination to
which all the Edge Aggregation systems can deliver their mes-
sages, and a single logical source for distributing the logs out to
the various Analysis Farms.

Logically, this is a single system (implemented as a load-bal-
anced cluster of boxes as needed). If you only have one datacen-
ter, you can easily collapse this functionality into your Edge
Aggregators by multi-homing them with one leg on a network you
use for your Analysis Farms. If you have multiple datacenters
with a disaster recovery set of Analysis Farms, you will want to
spread it across two datacenters that have Analysis Farms. The
logs from each half of the Core Aggregator cluster should be sent
to the other half so that both sets of Analysis Farms will see the
full set of logs. The other option is to have multiple Core Aggre-
gation clusters and have your Edge Aggregators send (and queue)
logs to every Core cluster.

Because this farm of systems is handling the full log feed, a large
enterprise will need to have these systems doing as little work as
possible. Ideally, they should not be doing any processing of the
log messages other than aggregating and delivering them.

34    AU G U S T 20 13  VO L . 3 8 N O. 4 	 www.usenix.org

SYSADMIN
Enterprise Logging

When delivering a large volume of logs to many destinations
(many different Analysis Farms), the resulting traffic can strain
your network (as well as the systems doing the sending). One
good way of dealing with this problem is to use Multicast MAC
as I described in a 2012 LISA paper [3].

The Analysis Farms
Analysis Farms are the systems that do something with the logs,
and because that includes lots of different things (especially in a
large organization), doing this analysis can take many systems’
worth of resources. So it’s a good idea to think of the different
sets of functionality as separate farms, even if you start off
implementing multiple sets of functionality on one box (or an HA
pair of boxes). This approach makes it much easier to split things
apart as your needs grow.

In a large enterprise, it may not be reasonable for everyone who
needs to see some logs to be able to do so. Depending on the
capabilities of the tools that you use, you may opt to implement
such restrictions in each tool, or you may choose to have multiple
Analysis Farms of the same type, but filter the logs so that a
given farm only contains the subset of logs that the users of that
farm are allowed to have access to.

The following are a handful of basic functions that you need to
have as part of your Analysis Farms.

Log Archiving
This can be as trivial as an HA pair of systems that just receives
the logs and writes them to disk in simple gzip files for long-term
data retention. In a more demanding environment, you could
have these systems digitally sign the log files to make them
tamper-resistant, encrypt the archives, and store the archives
off-site.

Log Message Alerts
You can get started with Simple Event Correlator (SEC) on an
HA pair of systems, and as your load climbs you can split the
logs across different machines along the lines described in this
LISA 2010 paper [4]. It’s a very good idea to feed the alerts that
are generated back into the system as new log messages that all
other Analysis Farms can then see.

Reporting on Log Contents
Start by using rsyslog filtering to split logs into different files per
application and then have simple scripts crunch these smaller
files periodically. (I do hourly and daily reports this way.)
SEC can also be useful for reporting. You can use a combina-
tion of Calendar rules and simple content matching rules to
count occurrences of matches and output the counts at regular
intervals.

Searching Logs
At low volumes, you can get by with zgrep, but as log volumes
increase, this becomes unwieldy as a general purpose search
tool; however, it’s still great when looking at a small time window
for specific data, especially when combined with rsyslog filter-
ing to create files that only contain a given type of log. This is
where Hadoop, Cassandra, ElasticSearch (all free), and Splunk
(commercial) come into play.

Other Uses
Beyond the basic functions outlined above, Analysis Farms pro-
vide endless possibilities for other uses, among them:

◆◆ Artificial ignorance reporting

◆◆ Machine learning

◆◆ Predictive modeling

◆◆ Automated reactions

The really nice feature of this architecture is that you can add/
remove Analysis Farms without having to reconfigure anything
beyond the Core Aggregators (and if you use the Multicast MAC
approach to distribute the data, you don’t even have to recon-
figure those). This lets you experiment freely with different
tools without disrupting anything else. It also makes it hard
for someone to generate a new set of logs and only send it to the
analysis tool that they care about without it going to other groups
(an app team forgetting to send the logs to the security team, for
example).

Here’s an example of a simple trick that you can implement to
get a lot of value immediately. I like to add vmstat and iostat
data to the logs. This both produces a tremendously dense set
of performance related data with little impact to the systems
and provides a heartbeat that you can use to detect if anything
(including system failure) interrupts the logs. Doing this can be
as simple as adding

nohup vmstat 60 |logger -t vmstat 2>&1 >/dev/null &

nohup iostat -xk 60 |logger -t iostat 2>&1 >/dev/null &

to your startup scripts. And a simple config to SEC similar to:

type=Single

ptype=perlfunc

pattern=sub {@test=split(‘ ‘, substr($_[0],16)); if ($test[1] =~

/vmstat/) { return $test[0];} }

desc=vmstat_$1

action=create vmstat_heartbeat_$1 180 (shellcmd sendmessage

“$1”)

continue=takenext

www.usenix.org	   AU G U S T 20 13  VO L . 3 8 N O. 4  35

SYSADMIN
Enterprise Logging

Conclusion
The value that you get out of a logging system is related far more
to the effort that you put into the system than the amount of
money you spend on the system. You can get a lot of value quickly
without spending a significant amount of money. I hope that this
article helps provide a road map that you can use to get started
dealing with your logs regardless of how much data you end up
dealing with as your system grows.

References
[1] http://json-ld.org/, http://cee.mitre.org/, https://
fedorahosted.org/lumberjack/.

[2] http://linux-ha.org/wiki/Heartbeat and
http://clusterlabs.org.

[3] David Lang, “ Building a 100K log/sec Logging Infra-
structure”: https://www.usenix.org/conference/lisa12/
building-100k-logsec-logging-infrastructure.

[4] Paul Krizak, “Log Analysis and Event Correlation Using
Variable Temporal Event Correlator (VTEC)”: http://static
.usenix.org/events/lisa10/tech/full_papers/Krizak.pdf.

xkcd

xkcd.com

