
24  A P R I L 20 13 VO L . 3 8 N O. 2 www.usenix.org

SECURITYAnalyzing Network Traffic with Chimera
J O N A T H A N S P R I N G E R , K E V I N B O R D E R S , A N D M A T T H E W B U R N S I D E

The increasing frequency and complexity of network-based attacks is
generating a correspondingly high level of interest in intrusion detec-
tion systems (IDS), which detect and filter these attacks. A variety of

languages such as Snort and Bro have been developed to program an IDS to
recognize specific threats, but these languages cater to specialists. We are
developing a new IDS language, Chimera, that is more accessible to analysts
and system administrators due to its adoption of the familiar SQL syntax.

Intrusion detection systems (IDS), operating, for example, at the switch level or as a trans-
parent “bump on the wire,” must cope with an ever-changing landscape of threats, which
requires that they be very flexible. This flexibility is realized by programmability: a pro-
gramming language serves to customize the IDS to look for traffic of interest. As a result, the
power of an IDS is constrained by the choice of language as well as by its physical capabilities
such as throughput rate.

A general-purpose programming language is not ideally suited to the task of telling IDS sys-
tems which traffic to report or filter. Core elements of the problem domain such as operating
over a stream of traffic and deconstructing packets lend themselves to special syntax that
gives the language user a lot of leverage. In selecting a syntactic model, the IDS programming
language needs to balance a number of factors that sometimes trade off against each other.
Some of these are

◆ Expressivity: how well properties of interest can be described in the language;

◆ Efficiency: how well the description can be realized with the IDS’s capabilities;

◆ Accessibility: how easily the user can make use of the language’s power.

Although the first two factors are commonly considered, less thought is often given to the
third. Snort [7], for example, aims to be lightweight. Its rules are easy to write and efficient to
check but are limited in their capabilities. Individual packet properties can be examined, but
correlating packets to investigate properties at the level of the protocol is difficult.

Bro [6] chooses to be more expressive, able to recognize protocol-level structure and to recog-
nize richer patterns in the traffic stream. One cost of this expressivity, however, is the addi-
tional demands on the user. Writing a Bro script is more akin to a traditional programming
task (albeit aided by domain-specific support), and this can limit its audience. Furthermore,
performance of these scripts is dependent on subtle implementation design decisions where
small changes to a script can dramatically affect performance of the whole IDS.

Although there is overlap, the audience of programmers is fundamentally different from the
audience of network operators and analysts. We would like to make the power of a language
like Bro more accessible to this latter pool of people, who have the domain expertise to know
what they are looking for but want better tools to express their desires. This audience needs
a better programming idiom. We have selected SQL as this idiom, and created the language
Chimera [2] to make use of it. We have implemented Chimera with a compiler that translates
to Bro, allowing us to take advantage of Bro’s expressive power and mature infrastructure.

Jonathan Springer is a Man-
aging Engineer at Reservoir
Labs. Jonathan started out
developing functional language
implementations at the Uni-

versity of Illinois, where he received his PhD
in computer science. After spending time
working on workstation compilers at Hewlett
Packard, he joined Reservoir, where he has led
numerous projects developing compilers, static
analysis tools, and language runtimes.
springer@reservoir.com

Kevin Borders is a Computer
Security Researcher and
Senior Software Engineer.
His research interests include
large-scale stream processing

and automated behavioral analysis. Kevin
completed his PhD at the University of
Michigan in May 2009, where his thesis topic
was protecting confidential information from
malicious software kevin.borders@gmail.com

Matt Burnside is a Researcher at the National
Security Agency. burnside3@llnl.gov

www.usenix.org A P R I L 20 13 VO L . 3 8 N O. 2 25

SECURITY
Analyzing Network Traffic with Chimera

The Chimera Language
Chimera’s use of SQL structure allows it to express complex,
stateful queries about data streams in a straightforward
manner. We choose SQ L because it is familiar to many users
and uses a high-level, word-based syntax to describe the
structure of data and how it is to be manipulated. Its applica-
tion to processing network traffic is not exact, though, and
requires some adaptation.

SQL operates over tables, in which the rows are records and the
columns are fields in those records. In the network analog, pack-
ets are rows. The structure of a packet, at the IP and TCP levels
as well as the application protocol level, decodes into columns.
In Chimera, we do not speak in terms of packets, however, but
in terms of tuples, an abstraction from relational algebra that
facilitates application to generalized data flows, which may or
may not be packets. Tuples are simply typed, multipart records.
Unlike SQL, where table data is uniform, Chimera provides
native support for variable-length records via list and map types
(useful, for example, for SMTP mail headers).

The notion of a flow of data is itself a departure from SQL.
Whereas we are used to thinking of an SQL query as operating
over a table of fixed size, Chimera operates over streams of inde-
terminate length. Some SQL operations are naturally defined in
terms of the cross product of all rows, an operation that doesn’t
make sense for a stream. Since we do not have infinite memory,
we must design our operations to account for the fact that we can
remember a limited number of tuples.

Beyond the principal differences just described, the SQL model
and lower-level features such as its expression language fit our
problem domain well. We illustrate this and introduce the lan-
guage details through examples below.

Basic Queries
While there are several top-level commands in SQL, includ-
ing those to create and update a data set, almost the only one of
interest to Chimera is the query operation, introduced by the
SELECT construct.

SELECT kexpl AS knamel [, AS knamel]* [modifiers]

A variety of the familiar SQL clauses may be used in a SELECT
query, and we survey those in the next section.

As a first taste of Chimera, consider the program in Listing 1.

 SELECT

 $.get(‘packets’).first().get(‘srcip’) AS srcip,

 $.get(‘headers’).first().get(‘User-Agent’) AS agent

 FROM http

Listing 1: A basic Chimera query

This informational query consists of one SELECT with a FROM
clause to indicate what data stream to process. There are a num-
ber of protocol parsers built into Chimera; these cover HTML,
SMTP, DNS, and other common protocols. All that is needed to
access the parsed stream of objects is to refer to the correct pre-
defined stream. Each is a stream of tuples, all of which conform
to a record structure with a specific set of named fields.

The main body of the SELECT—the lines beginning with $.get
in this example—are a comma-separated list of data items that
are returned as the result of the select query. These data items
can optionally be named with an AS clause, with these names
used in other clauses attached to the SELECT (though none
exist in this case).

Each of the two data items is constructed by code drawing
from Chimera’s rich expression syntax. In this case, the code
performs a sequence of operations, evaluated from left to
right. The stream produced by the protocol parser is accessed
by referring to the special token $. The first function call, the
method get(‘packets’) operates on the stream to obtain the
raw list of packets. The result of this operation is a list, from
which we pick off the first item via a second function call
first(). The object we obtain is a Map, which maps names to
values as in a tuple from the stream. We pick out the source IP
address with another “get” call, get(‘srcip’). The second data
item is constructed in just the same way, except by referring to
the list of HTTP headers provided by the protocol parser and
picking out the “User-Agent” header.

The “get” operation is so common that Chimera supports a
shorter equivalent, [field]. An expression [srcip] will perform
a get(‘srcip’) function call. In addition, if the object it operates
on turns out to be a list rather than a record, it applies a first()
operation. Finally, if a method is not applied to any object (no
dot operator), it is treated as implicitly referring to the stream as
with $. Thus, our example can be rewritten more concisely, as in
Listing 2.

 SELECT

 [packets].[srcip] AS srcip,

 [headers].[User-Agent] AS agent

 FROM http

Listing 2: Variant form of first Chimera query

Arranging Information
With only the SELECT construct, we cannot do much data
processing beyond retrieving structured data from the network
packet stream. Often we want to filter and rearrange a stream to
get a more concise or pertinent result. This can be done with addi-
tional modifier clauses supported in conjunction with a SELECT.

26  A P R I L 20 13 VO L . 3 8 N O. 2 www.usenix.org

SECURITY
Analyzing Network Traffic with Chimera

WHERE { boolexp }
The WHERE clause can be used to filter the result according to
a Boolean expression. The { boolexp } is evaluated for each tuple
in the stream, and only those for which the result is true are
retained.

GROUP BY { exp } UNTIL { boolexp }
The GROUP BY clause operates a little differently from its SQL
counterpart. Because we have a stream of input data, we cannot
process an entire table at once and must consider when exactly
to bundle an incoming group as a unit for processing. Controlling
this “window” of processing is key to keeping execution efficient
and timely. The GROUP BY clause combines like tuples accord-
ing to { exp } until { boolexp } becomes true, at which point it
emits the group of tuples and starts another.

Listing 3 shows an example of a query that uses the additional
features discussed above.

 SELECT count_distinct([aip]), [name]

 FROM dns_rr

 WHERE [aip] != NULL

 GROUP BY [name]

 UNTIL GLOBAL

 ([packets].first().timestamp() -

 [packets].last().timestamp()) > 86400

Listing 3: Query to list distinct IP addresses per domain name

The goal of this query is to list the distinct IP addresses per
domain. It starts with the DNS protocol stream; a special form
that has been decoded into individual columns (or tuples) by
Chimera is provided by the dns_rr token. Tuples without an
IP address are dropped by the WHERE clause. The tuples are
grouped by like domain names by the GROUP BY clause, and
chunked to a 24-hour window (the GLOBAL keyword indicates
that the boolexp refers to the global stream rather than the ele-
ment being processed). When the window of the GROUP BY has
expired, the name and a count of the distinct IP addresses are
constructed (utilizing a call to a built-in function count_distinct)
and returned.

Working with Multiple Streams
So far, we have the ability to do detailed inspection and manipu-
lation of a single stream. Often, however, we want to be able to
correlate information learned across streams, or perform mul-
tiple manipulations of the same stream. Chimera supports this
through JOIN and CREATE VIEW syntax.

JOIN { stream } ON { exp } EQUALS { exp }
A JOIN combines two streams into one. Chimera joins are
required to be equi-joins, meaning { exp } expressions may
compare for equality only. There are still many different ways
to perform the combination. Chimera understands the standard
LEFT/RIGHT/FULL, EXCLUSIVE, and OUTER dimensions.
Note that not all combinations of these modifiers are supported
in the current implementation.

Additionally, Chimera makes an efficiency-related distinction
relevant to streams. When matching elements from the left
and right streams, storing them is necessary (Chimera uses a
hash table for this purpose). By default, Chimera orders the join
so that left-side tuples will only match later right-side tuples,
meaning only left-side ones need to be stored. The UNOR-
DERED keyword can be used to get the traditional, symmetric
behavior (at the cost of also storing right-side tuples).

CREATE VIEW { name } AS { select }
Unlike the above constructs, CREATE VIEW is not a modifier to
a SELECT, but rather a top-level construct in its own right. The
purpose is simply to save the results of some query by assigning
a name to it.

Now we have the tools to construct complex queries that
correlate across multiple streams. Consider the problem of
spam detection. One way to approach this would be to write
an analytic that keeps an eye out for new mail transfer agents
(MTAs), and if one is seen that transmits a large amount of
mail in a small amount of time, report it. We can write a query
that operates over the SMTP-parsed stream, looking for MTAs
in the “Received” header. For 24 hours after a new one is seen,
keep a count of the number of distinct recipients from that
MTA. If the amount exceeds some threshold (say 50), emit a
tuple reporting this.

This query is complex in that it requires not only understanding
the protocol, but keeping state on the history of traffic and cor-
relating the new MTAs with the recipient count. Listing 4 gives
an implementation in Chimera.

 CREATE VIEW mtasmtp

 AS (SELECT headers AS headers,

 [packets].timestamp() AS time0,

 [headers].find(‘RECEIVED’).sub_regex(‘^.*by +’, ‘’)

 .sub_regex(‘ .*$’, ‘’) AS mta

 FROM smtp

 WHERE [headers].find(‘RECEIVED’) == /.*by .*/);

 CREATE VIEW mtasmtp_unique

 AS (SELECT headers, mta AS mta, time0 AS time0

 FROM mtasmtp

 WHERE unique([mta]));

 SELECT

www.usenix.org A P R I L 20 13 VO L . 3 8 N O. 2 27

SECURITY
Analyzing Network Traffic with Chimera

 merge([b].[headers].find(‘TO’).split_regex(‘, ‘),

 [b].[headers].find(‘CC’).split_regex(‘, ‘),

 [b].[headers].find(‘BCC’).split_regex(‘, ‘)

).iterall{count_distinct($)}

 AS recipient_count,

 [a].[mta]

 FROM

 mtasmtp_unique AS a JOIN mtasmtp AS b

 ON [mta] EQUALS [mta]

 WHERE [b].[time0] - [a].[time0] < 86400

 GROUP BY [a].[mta]

 UNTIL [recipient_count] > 50

Listing 4: Spam detection Chimera script

To start, we create two subsidiary queries with the CREATE
VIEW construct. The first creates a stream mtasmtp, which is
a view of smtp in which we have extracted the MTA from the
“Received” line as well as a timestamp and the headers. The sec-
ond view is created by filtering mtasmtp down to unique MTAs
using a Chimera built-in function unique() on the mta field that
we constructed in the previous CREATE VIEW. With these two
views, we are ready to construct the core query via SELECT. The
two views are joined, performing the key correlation between
MTA and recipients mentioned above. Only tuples within the
one-day window are retained. We then extract specific recipi-
ents from all relevant headers (To, Cc, and Bcc) and feed those
into a total count. This is used to trigger a new group, leading to
the query output.

Related Work
We are not the first to combine SQL with a streaming data
model, nor even to apply this to network traffic analysis.
STREAM [5] and Aurora [1] are seminal works in this area.
Research into windowed querying [4] and load shedding [8] has
also been done. These efforts informed the present work, and
Chimera builds on them in a few ways. Chimera adds support
for structured datatypes, and operations such as SPLIT mediate
between structured values in the expression language and the
domain of tuples manipulated by the query language. Chimera
also innovates in its support for windows, offering the UNTIL
trigger for aggregates and the WINDOW condition for joins.
Finally, of course, Chimera provides a translation to an external
framework, Bro.

Another project that aims to support network traffic analysis using
an SQL query language is Gigascope [3]. Gigascope is a vertically
integrated platform where the query language is tied to the imple-
mentation platform. Chimera is designed to be platform-agnostic,
and we are developing implementation targets other than Bro as well
as stream sources other than network traffic. Gigascope’s query lan-
guage also shares the limitations of the streaming SQL work noted
above with respect to windows and to structured data.

Looking Forward
We have covered just the core features of Chimera, but there is more
in the query language, the expression language, and the built-in
library of functions and protocol parsers. Additional details are pro-
vided in our symposium paper [2]. We have also set up a site, www.
chimera-query.org, which tracks the latest news and updates to the
language and implementation.

Chimera is in its early stages yet. More experience is needed at the
language level in order to assess it from a practical usability stand-
point. There is no substitute for people writing queries to determine
what works well and what weaknesses need to be addressed. On the
implementation side, while we have a preliminary compiler to Bro,
there are still missing features and much more testing needs to be
done.

Our goal is to release the implementation under an OSI-approved
license. We believe that this software will be especially attractive to
those who use or might consider Bro, as the two can coexist, allowing
different interfaces to a common installation. Our hope is to foster
an ecosystem around Chimera so that the power of the IDS can be
utilized more readily by system administrators and analysts.

28  A P R I L 20 13 VO L . 3 8 N O. 2 www.usenix.org

SECURITY
Analyzing Network Traffic with Chimera

USENIX Board of Directors
Communicate directly with the USENIX Board of Directors by writing to board@usenix.org.

p r e s i d e n t

Margo Seltzer, Harvard University
margo@usenix.org

v i c e p r e s i d e n t

John Arrasjid, VMware
johna@usenix.org

s e c r e t a r y

Carolyn Rowland
carolyn@usenix.org

t r e a s u r e r

Brian Noble, University of Michigan
noble@usenix.org

d i r e c t o r s

David Blank-Edelman, Northeastern University
dnb@usenix.org

Sasha Fedorova, Simon Fraser University
sasha@usenix.org

Niels Provos, Google
niels@usenix.org

Dan Wallach, Rice University
dwallach@usenix.org

c o - e x e c u t i v e d i r e c t o r s

Anne Dickison
anne@usenix.org

Casey Henderson
casey@usenix.org

References
[1] Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cher-
niack, Christian Convey, Sangdon Lee, Michael Stonebraker,
Nesime Tatbul, and Stan Zdonik, “Aurora: A New Model and
Architecture for Data Stream Management,” 2003.

[2] Kevin Borders, Jonathan Springer, and Matthew Burnside,
“Chimera: A Declarative Language for Streaming Network
Traffic Analysis,” Proceedings of the 21st USENIX Security
Symposium, 2012.

[3] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and
Vladislav Shkapenyuk, “Gigascope: A Stream Database for
Network Applications,” Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, 2003, pp.
647-651.

[4] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and
Peter A. Tucker, “No Pane, No Gain: Efficient Evaluation of
Sliding-Window Aggregates over Data Streams,” 2005.

[5] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian
Babcock, Shivnath Babu, Mayur Datar, Gurmeet Manku, Chris
Olston, Justin Rosenstein, and Rohit Varma, “Query Process-
ing, Resource Management, and Approximation in a Data
Stream Management System,” Technical Report 2002-41,
Stanford InfoLab, 2002.

[6] Vern Paxson, “Bro: A System for Detecting Network Intrud-
ers in Real-Time,” 1999.

[7] Martin Roesch, “Snort-Lightweight Intrusion Detection for
Networks,” Proceedings of LISA ’99: 13th Systems Administra-
tion Conference, USENIX, 1999.

[8] Nesime Tatbul and Stan Zdonik, “Window-Aware Load
Shedding for Aggregation Queries over Data Streams,” 32nd
International Conference on Very Large Data Bases, 2009.

LISA (a SIG for system administrators)

participation in shaping the industry)
Membership (provides benefits and

and books)
Publications (journals, proceedings,

students, academics, and the community)
Academic Programs & Good Works (for

munity building, and educational training)
Conferences (technology sharing, com-

systems community in the following ways:
We offer services to the advanced computing

What We Do

community at large
Encourage computing outreach into the

technical issues
Provide a neutral forum for discussion of

practical bias
Support and disseminate research with a

Foster technical excellence and innovation

mission is to:
on the cutting edge of the computing world. Our
administrators, scientists, and technicians working
together the community of engineers, system
Since 1975, the USENIX Association has brought

Who We Are

www.usenix.org/students

Special Discounts: USENIX offers its members
discounts on everything from Linux Journal to No
Starch Press and O’Reilly books, and more.

Publish Your Work: A must-have for technology
students wanting to stay ahead of the curve. CiteSeer
ranks our proceedings among the top ten in highest
impact for computer science.
Proceedings are published for each event and are imme-
diately available to student members. USENIX also offers
a Best Student Paper Award at many events. The awards
are cash prizes awarded to the best paper for which a stu-
dent is the lead author at the USENIX event. Keep an eye
out for our Calls for Papers (CFPs), and feel free to submit
a paper!

Unparalleled Networking Opportunities:
Students who attend USENIX conferences and contribute
to mailing lists have the chance to mingle with leaders in
their field. Take the opportunity to chat with industry
experts during the many conference Guru Is In sessions,
the “hallway track,” and evening events.

expenses.
USENIX conferences, covering registration and helping with
partners to provide financial assistance to students to attend

USENIX works with corporateConference Grants:

a year.
year and LISA, the SIG for system administrators, for $30
for full-time students. Students can join USENIX for $50 a
and conference registration fees at an affordable low rate

We keep membership duesStudent Discounts:

USENIX offers programs tailored especially for students, including:

Why Students Should Join

