
30  A P R I L 20 13 VO L . 3 8 N O. 2 www.usenix.org

COLUMNSPractical Perl Tools
What’s Up, perldoc?

D A V I D N . B L A N K - E D E L M A N

David N. Blank-Edelman is the
Director of Technology at the
Northeastern University College
of Computer and Information

Science and the author of the O’Reilly book
Automating System Administration with Perl (the
second edition of the Otter book), available
at purveyors of fine dead trees everywhere.
He has spent the past 24+ years as a system/
network administrator in large multi-platform
environments, including Brandeis University,
Cambridge Technology Group, and the MIT
Media Laboratory. He was the program chair
of the LISA ‘05 conference and one of the LISA
‘06 Invited Talks co-chairs. David is honored
to have been the recipient of the 2009 SAGE
Outstanding Achievement Award and to serve
on the USENIX Board of Directors beginning in
June of 2010. dnb@ccs.neu.edu

For the past million or so columns, we’ve taken a look at how to use
Perl to do X or how to use Perl to do X by communicating with such
and such Web service. Every once in a while I think it is good to step

back and talk about how to use Perl, period. This is going to be one of those
columns where we go back to some of the basics that you may have missed as
you zoomed right to the “high priestess of Perl” status you now hold. We’re
going to talk a bit about documentation in the Perl world, both how to con-
sume and create it.

Rockin’ the perldoc
If you looked back at all of the classes I’ve taught over the years with Perl content in them,
I think you could make a safe bet that there would be someone in every class who has never
heard of the “perldoc” command. If you really wanted to cash in, you would bet that a large
majority of the people in the room who already knew about the command didn’t realize
everything it can do. Want to take that bet? Read on.

“perldoc” is a command that ships with Perl. It is designed to show you various parts of the
Perl documentation installed on your system. The documentation it can display includes all
of the text documentation that ships with Perl plus the manual pages for the core modules
and any modules you’ve installed.

So, for example, if you wanted to see the manual page for the File::Spec module, you could type

 perldoc File::Spec

and perldoc would find the documentation, run it through a converter to convert it into man
page format, hand the man page to whatever your system uses to display them (e.g., nroff -man),
and then show it to you in your favorite pager. This works fine for the larger Perl documenta-
tion sections as well:

 perldoc perldsc

(Wait, you mean you didn’t know that Perl shipped with such excellent doc as the Perl Data
Structures Cookbook and perlperf, the Perl Performance and Optimization Techniques tome?
Well, you best type “perldoc perl” right now and then come back to this article in a few hours
after you’ve read some of the good stuff you’ll find. For a more verbose version of that listing,
try “perldoc perltoc”.)

A very reasonable question you might have about this command is “Why not just type ‘man
File::Spec’?” It’s a good question because for the core modules, on many default installations
of Perl, this will indeed work. perldoc is preferable for at least two reasons:

1. perldoc will find documentation within a copy of Perl that wasn’t installed in the default
place (“man” won’t find it unless you changed your MANPATH), and

2. unless your Perl was installed carefully with this in mind, non-core modules may install their
documentation in a different place or with a different suffix than “man” expects.

www.usenix.org A P R I L 20 13 VO L . 3 8 N O. 2 31

COLUMNS
Practical Perl Tools

But perhaps the best argument for perldoc over man is about to
be revealed when we look at the cool stuff it can do.

Not to give away the best hint first, but I don’t think I would find
coding in Perl as easy as I do if it wasn’t for the -f flag to perldoc.
The -f flag lets you look up the doc for all of the many, many Perl
built-in language functions. Can’t remember what the order of
the arguments of the split() is? Type:

 perldoc -f split

and you’ll see

 split /PATTERN/,EXPR,LIMIT

 split /PATTERN/,EXPR

 split /PATTERN/

 split Splits the string EXPR into a list of strings and

 returns that list. ...

along with all of the rest of the documentation on that function.
A similar flag, -v, helps you look up the documentation for a
dizzying array of predefined variables in Perl. So let’s say you
were reading someone else’s code and you run into the $(vari-
able. If you didn’t want to shake your head sadly and say, “Kids
these days, with their wacky emoticons, I just don’t understand
them...” you could instead type

 perldoc -v ‘$(‘

and you’d see

 $REAL_GROUP_ID

 $GID

 $(The real gid of this process. ...

For people just starting out with Perl, it can be helpful to type
commands such as

 perldoc -v ‘%ENV’

to see what the %ENV hash is and what it does.

Beginners may be aware that there exists a substantial nine-
part FAQ about Perl and how to use it, but I’d dare say that
they probably don’t know they can search it using perldoc’s
-q f lag. If you type perldoc -q {something}, it will search for
that something (using a regular expression search, btw) in the
questions text from all of the sections of the perlfaq. If I typed
“perldoc -q mail,” for example, it would show me the answers
to the following questions:

◆	 What mailing lists are there for Perl?

◆	 How do I parse a mail header?

◆	 How do I check a valid mail address?

◆	 How do I return the user’s mail address?

◆	 How do I send mail?

◆	 How do I use MIME to make an attachment to a mail message?

◆	 How do I read mail?

I may have listed my most used perldoc hint first, but I have
saved the most surprising for last. Very few people know about
the -l and the -m flags to perldoc. Here’s where they come in
handy: anyone who has done any substantial amount of Perl
programming has had to go look at the Perl source to a module
they are using. You do this for any number of reasons: sometimes
it is sheer curiosity for how something has been implemented;
sometimes we’re struggling to figure out how to use a module
and have to resort to the source code for guidance; other times
we need to better understand an object it defines and so on.

The first step toward consulting the source code of a module is
finding where it lives on disk. This can be done using the -l flag.
To return to the very first example, if we wanted not only to see
the documentation for File::Spec, but where it was installed, we
could type

 perldoc -l File::Spec

and find out this path on OS X’s Mountain Lion release:

/System/Library/Perl/5.12/darwin-thread-multi-2level/

File/Spec.pm

There’s a bunch of auxiliary info we’re getting back from this
little command, including just where modules are installed on
the system and the version of Perl in play (or at least the ver-
sioned directory presumably associated with that version).

But that’s just where the file is located; even cooler still is to run
perldoc using the -m flag:

 perldoc -m File::Spec

 package File::Spec;

 use strict;

 use vars qw(@ISA $VERSION);

32  A P R I L 20 13 VO L . 3 8 N O. 2 www.usenix.org

COLUMNS
Practical Perl Tools

 $VERSION = ‘3.31_01’;

 $VERSION = eval $VERSION;

 my %module = (MacOS => ‘Mac’,

 MSWin32 => ‘Win32’,

 os2 => ‘OS2’, ...

Why yes, that is the actual source of the module. With one com-
mand we can easily see the source of (the main file of) a module.
Very handy sometimes!

perldoc from Orbit
perldoc on your machine works great for providing the docu-
mentation for Perl things installed on that machine, but what if
you wanted to consult the documentation for a different version
of Perl? A lovely resource for that sort of thing is the Web site
http://perldoc.perl.org, which has the full doc sets for 16 versions
at last count and offers a usable Web interface to boot.

If you fall in love with that Web interface and can’t bear to be
without it even when you are disconnected from the Intertubes,
Jon Allen, the site’s creator, offers a module to help you run an
HTTP-served version of the doc on any machine. Perldoc::Server
will provide a Catalyst-based Web application that can be
started up just by typing “perldoc-server”. Perldoc::Server will
then run a tiny Web server by default on port 7375 (“PERL” on a
phone keypad, explains the doc).

So far it appears all of the command line stuff we’ve talked
about displays documentation for things that have been installed
locally. That seems kind of limiting. Perhaps you’d like to see
the documentation for something you haven’t installed on that
machine. Pod::Cpandoc will do this for you. When you install it,
it provides a command “cpandoc,” which can stand in for perldoc
if you’d like. If you type

 cpandoc SomeModule

it will display the locally installed doc (just as perldoc would do),
and if it can’t find it there, it will fetch it right from CPAN. And
in case you are curious, the perldoc flags I was crowing about
above still work. If you type

 cpandoc -m SomeModule

and SomeModule isn’t installed, it will still let you read the
source for that module by grabbing it from CPAN. cpandoc even
slips in a flag perldoc doesn’t have: -c. This flag will show the
Changes (i.e., a changelog) for a module if it has one.

Good Documentation Starts at Home
I’d like to switch gears now and move away from how to consume
documentation to the question of how to create good documenta-
tion for the Perl code you write. The first thing you’ll want to do

is take a quick look at the Pod (Plain Old Documentation) docu-
mentation with a command like “perldoc perlpod”. The reason
why I say “quick” is I find that reference page to be a bit over-
whelming if you’ve never seen Pod before. Glance over it, maybe
make note of the sections on how to embed Pods in Perl Modules
and Hints for Writing Pod, but don’t get nervous. Pod is described
in the doc as “a simple-to-use markup language used for writing
documentation for Perl, Perl programs, and Perl modules,” and
it really is. I think the easiest way to learn Pod is to pick a simple
module or command that has been marked up, look at the source,
and basically copy what you see there.

For example, if we looked at the source for the cpandoc command
line script, we’d see:

 #!/usr/bin/env perl

 use Pod::Cpandoc;

 exit(Pod::Cpandoc->run());

 __END__

 =head1 NAME

 cpandoc

 =head1 DESCRIPTION

 See L<Pod::Cpandoc> and L<Pod::Perldoc>.

 =cut

The first part loads the module and calls a function to start it
running. But that’s not the interesting part for our discussion.
After the executable code, there is a marker of __END__ to let
Perl’s parser know that it has finished finding any code it should
read in. From that point on, we see Pod format doc with two
headings (=head1), a little bit of body text, and a =cut command
to indicate the end of that Pod block. Here we are seeing Pod at
the end of the Perl code, but it is also designed to be interleaved
with executable code so that the doc is right next to the code it
documents. When used with care, this programming style can be
used quite effectively. If you find you like the idea of combining
code and doc and you’d like to see how far the idea can be taken,
I’d encourage you to check out Knuth’s work on literate program-
ming (and in case you are curious, I was going use Pod and liter-
ate programming in the same sentence until the Wikipedia entry
slapped me down hard).

Rather than dwelling on Pod for the entirety of this section, I’d
like to end with a look at a spiffy documentation-related module
that has actually shipped with Perl since the 5.6 days back in
2000. The Pod::Usage module comes with a pod2usage() func-
tion that can do magic if you’ve embedded Pod documentation

www.usenix.org A P R I L 20 13 VO L . 3 8 N O. 2 33

COLUMNS
Practical Perl Tools

in your code. pod2usage() knows how to find the USAGE and
related sections of your Pod documentation and spit them out
at a given level of verbosity. You can programmatically decide
whether it will show just the USAGE text (i.e., the SYNOPSIS) or
even the whole man page. To see all this in action, let’s look at the
recommended use sample code from the documentation:

 use Getopt::Long;

 use Pod::Usage;

 my $man = 0;

 my $help = 0;

 ## Parse options and print usage if there is a syntax

 ## error, or if usage was explicitly requested.

 GetOptions(‘help|?’ => \$help, man => \$man)

 or pod2usage(2);

 pod2usage(1) if $help;

 pod2usage(-verbose => 2) if $man;

 ## If no arguments were given, then allow STDIN to be

 ## used only if it’s not connected to a terminal

 ## (otherwise print usage)

 pod2usage(“$0: No files given.”)

 if ((@ARGV == 0) && (-t STDIN));

 __END__

 =head1 NAME

 sample - Using GetOpt::Long and Pod::Usage

 =head1 SYNOPSIS

 sample [options] [file ...]

 Options:

 -help brief help message

 -man full documentation

 =head1 OPTIONS

 =over 8

 =item B<-help>

 Print a brief help message and exits.

 =item B<-man>

 Prints the manual page and exits.

 =back

 =head1 DESCRIPTION

 B<This program> will read the given input file(s)

 and do something useful with the contents thereof.

 =cut

Here we can see a more complete Pod example topped off by
calls to pod2usage. If this script gets called with a -man switch,
it will show the entire manual page. If it is called with a -help or
-? switch, only the SYNOPSIS section will be printed. This is
similarly printed if the script doesn’t receive the input it expects
(i.e., is called with no arguments) as a way of demonstrating how
pod2usage() can help provide useful error messages. I think it is
a nice touch for a script to be able to supply its own documenta-
tion if asked.

So go, document lots. Take care and I’ll see you next time.

