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High-speed approximate set-membership tests are critical for many 
applications, and Bloom filters are used widely in practice, but do 
not support deletion. In this article, we describe a new data struc-

ture called the cuckoo filter that can replace Bloom filters for many approxi-
mate set-membership test applications. Cuckoo filters allow adding and 
removing items dynamically while achieving higher lookup performance, 
and also use less space than conventional, non-deletion-supporting Bloom 
filters for applications that require low false positive rates (ϵ< 3%).

Set-membership tests determine whether a given item is in a set or not. By allowing a small 
but tunable false positive probability, set-membership tests can be implemented by Bloom 
filters [1], which cost a constant number of bits per item. Bloom filters are efficient for repre-
senting large and static sets, and thus are widely used in many applications from caches and 
routers to databases; however, the existing items cannot be removed from the set without 
rebuilding the entire filter. In this article, we present a new, practical data structure that is 
better for applications that require low false positive probabilities, handle a mix of “yes” and 
“no” answers, or that need to delete items from the set.

Several proposals have extended classic Bloom filters to add support for deletion but with 
significant space overhead: counting Bloom filters [5] are four times larger and the recent 
d-left counting Bloom filters (dl-CBFs) [3, 2], which adopt a hash table-based approach, are 
still about twice as large as a space-optimized Bloom filter. This article shows that support-
ing deletion for approximate set-membership tests does not require higher space overhead 
than static data structures like Bloom filters. Our proposed cuckoo filter can replace both 
counting and traditional Bloom filters with three major advantages: (1) it supports add-
ing and removing items dynamically; (2) it achieves higher lookup performance; and (3) it 
requires less space than a space-optimized Bloom filter when the target false positive rate  
ϵ is less than 3%. A cuckoo filter is a compact variant of a cuckoo hash table [7] that stores 
fingerprints (hash values) for each item inserted. Cuckoo hash tables can have more than 
90% occupancy, which translates into high space efficiency when used for set membership.

Bloom Filter Background
Standard Bloom filters allow a tunable false positive rate ϵ so that a query returns either 
“definitely not” (with no error) or “probably yes” (with probability ϵ of being wrong). The 
lower ϵ is, the more space the filter requires. An empty Bloom filter is a bit array with all bits 
set to “0”, and associates each item with k hash functions. To add an item, it hashes this item 
to k positions in the bit array, and then sets all k bits to “1”. Lookup is processed similarly, 
except it reads k corresponding bits in the array: if all the bits are set, the query returns posi-
tive; otherwise it returns negative. Bloom filters do not support deletion, thus removing even 
a single item requires rebuilding the entire filter.

Counting Bloom filters support delete operations by extending the bit array to a counter 
array. An insert then increments the value of k counters instead of simply setting k bits, and 
lookup checks  whether each of the required counters is non-zero. The delete operation dec-
rements the values of the k counters. In practice the counter usually consists of four or more 
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bits, and a counting Bloom filter therefore requires four times 
more space than a standard Bloom filter.

The work on d-left counting Bloom filters (dl-CBFs) [2, 3] is 
intellectually closest to our cuckoo filter. A dl-CBF constructs a 
hash table for all known items by d-left hashing [6], but replaces 
each item with a short fingerprint (i.e., a bit string derived from 
the item using a hash function). The dl-CBFs can reduce the 
space cost of counting Bloom filters, but still require twice the 
space of a space-optimized Bloom filter.

Cuckoo Filter
The cuckoo filter is a compact data structure for approximate 
set-membership queries where items can be added and removed 
dynamically in O(1) time. Essentially, it is a highly compact 
cuckoo hash table that stores fingerprints (i.e., short hash val-
ues) for each item.

Basic Cuckoo Hash Table
Cuckoo hashing is an open addressing hashing scheme to con-
struct space-efficient hash tables [7]. A basic cuckoo hash table 
consists of an array of buckets where each item has two candi-
date buckets determined by hash functions h1(·) and h2(·) (see 
Figure 1). Looking up an item checks both buckets to see whether 
either contains this item. If either of its two buckets is empty, 
we can insert a new item into that free bucket; if neither bucket 
has space, it selects one of the candidate buckets (e.g., bucket 6), 
kicks out the existing item (“a”), and re-inserts this victim item 
to its own alternate location (bucket 4). Displacing the victim 
may also require kicking out another existing item (“c”), so this 
procedure may repeat until a vacant bucket is found, or until a 
maximum number of displacements is reached (e.g., 500 times 
in our implementation). If no vacant bucket is found, the hash 
table is considered too full to insert and an expansion process is 
scheduled. Though cuckoo hashing may execute a sequence of 
displacements, its amortized insertion time is still O(1). Cuckoo 
hashing ensures high space occupancy because it can refine 
earlier item-placement decisions when inserting new items. 

Proper configuration of various cuckoo hash table parameters 
can ensure table occupancy more than 95%.

Dynamic Insert
When inserting new items, cuckoo hashing may relocate exist-
ing items to their alternate locations in order to make room 
for the new ones. Cuckoo filters, however, store only the items’ 
fingerprints in the hash table and therefore have no way to read 
back and rehash the original items to find their alternate loca-
tions (as in traditional cuckoo hashing). We therefore propose 
partial-key cuckoo hashing to derive an item’s alternate location 
using only its fingerprint. For an item x, our hashing scheme 
calculates the indexes of the two candidate buckets i1 and i2 as 
follows: 

i1= HASH(x),

i2= i1 ⊕HASH(x′s fingerprint).

Eq. (1)

The exclusive-or operation in Eq. (1) ensures an important prop-
erty:  i1 can be computed using the same formula from i2 and the 
fingerprint; therefore, to displace a key originally in bucket i (no 
matter whether i is i1 or i2), we can directly calculate its alter-
nate bucket j from the current bucket index i and the fingerprint 
stored in this bucket by 

j = i ⊕HASH(fingerprint).

Eq. (2)

Hence, insertion can complete using only information in the 
table, and never has to retrieve the original item x.

Note that we hash the fingerprint before it is XOR-ed with the 
index of its current bucket, in order to help distribute the items 
uniformly in the table. If the alternate location is calculated by “i 
⊕Fingerprint” without hashing the fingerprint, the items kicked 
out from nearby buckets will land close to each other in the table, 
assuming the size of the fingerprint is small compared to the 
table size. Hashing ensures that items kicked out can land in an 
entirely different part of the hash table.

Does Partial-Key Cuckoo Hashing Ensure High 
Occupancy?
 The values of i1 and i2 calculated by Eq. (1) are uniformly distrib-
uted, individually. They are not, however, necessarily indepen-
dent of each other (as required by standard cuckoo hashing). 
Given the value of i1, the number of possible values of i2 is at most 
2f where each fingerprint is f bits; when f ≤ log2r where r is the 
total number of buckets, the choice of i2 is only a subset of all the 
r buckets of the entire hash table. For example, using one-byte 
fingerprints, given i1 there are only up to 2f=256 different pos-
sible values of i2 across the entire table; thus i1 and i2 are depen-
dent when the hash table contains more than 256 buckets. This 
situation is relatively common, for example, when the cuckoo 

Figure 1: A cuckoo hash table with eight buckets
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filter targets a large number of items but a moderately low false 
positive rate.

The table occupancy, though, can still be close to optimal in most 
cases (where optimal is when i1 and i2 are fully independent). We 
empirically show in the Evaluation section that this algorithm 
achieves close-to-optimal load when each fingerprint is suffi-
ciently large.

Dynamic Delete
With partial-key cuckoo hashing, deletion is simple. Given an 
item to delete, we check both its candidate buckets; if there is a 
fingerprint match in either bucket, we just remove the finger-
print from that bucket. This deletion is safe even if two items 
stored in the same bucket happen to have the same fingerprint. 
For example, if item x and y have the same fingerprint, and both 
items can reside in bucket i1, partial-key cuckoo hashing ensures 
that bucket i2 = i1 ⊕HASH(fingerprint) must be the other candi-
date bucket for both x and y. As a result, if we delete x, it does not 
matter if we remove the fingerprint added when inserting x or 
y; the membership of y will still return positive because there is 
one fingerprint left that must be reachable from either bucket  
i1 and i2.

Optimizing Space Efficiency
Set-Associativity: Increasing bucket capacity (i.e., each bucket 
may contain multiple fingerprints) can significantly improve 
the occupancy of a cuckoo hash table [4]; meanwhile, comparing 
more fingerprints on looking up each bucket also requires longer 
fingerprints to retain the same false positive rate (leading to 
larger tables). We explored different configuration settings and 
found that having four fingerprints per bucket achieves a sweet 
point in terms of the space overhead per item. In the following, 
we focus on the (2,4)-cuckoo filters that use two hash functions 
and four fingerprints per bucket.

Semi-Sorting: During lookup, the fingerprints (i.e., hashes) in a 
single bucket are compared against the item being tested; their 
relative order within this bucket does not affect query results. 
Based on this observation, we can compress each bucket to save 
one bit per item, by “semi-sorting” the fingerprints and encoding 
the sorted fingerprints. This compression scheme is similar to 

the “semi-sorting buckets” optimization used in [2]. Let us use 
the following example to illustrate how the compression works.

When each bucket contains four fingerprints and each finger-
print is four bits, an uncompressed bucket occupies 16 bits; how-
ever, if we sort all four four-bit fingerprints in this bucket, there 
are only 3,876 possible outcomes. If we precompute and store 
all of these 3,876 16-bit buckets in an extra table, and replace 
the original bucket with an index into the precomputed table, 
each bucket can be encoded by 12 bits rather than 16 bits, saving 
one bit per fingerprint (but requiring extra encoding/decoding 
tables).

Comparison with Bloom Filter
When is our proposed cuckoo filter better than Bloom filters? 
The answer depends on the goals of the applications. This sec-
tion compares Bloom filters and cuckoo filters side-by-side using 
the metrics shown in Table 1 and several additional factors.

Space efficiency: Table 1 compares space-optimized Bloom 
filters and (2,4)-cuckoo filters with and without semi-sorting. 
Figure 2 further shows the trend of these schemes when  varies 
from 0.001% to 10%. The information theoretical bound requires 
log2(1/ϵ) bits for each item, and an optimal Bloom filter uses 1.44 
log2(1/ϵ) bits per item, or 44% overhead. (2,4)-cuckoo filters with 
semi-sorting are more space efficient than Bloom filters when   
< 3%.

Number of memory accesses: For Bloom filters with k hash 
functions, a positive query must read k bits from the bit array. 
For space-optimized Bloom filters that require k=log2(1/ϵ), when 
ϵ gets smaller, positive queries must probe more bits and are 
likely to have more cache line misses when reading each bit. For 
example, k equals 2 when ϵ = 25%, but the value quickly grows 
to 7 when ϵ = 1%, which is more commonly seen in practice. A 
negative query to a space optimized Bloom filter reads 2 bits on 
average before it returns, because half of the bits are set [8]. In 
contrast, any query to a cuckoo filter, positive or negative, always 
reads a fixed number of buckets, resulting in two cache line 
misses.

Static maximum capacity: The maximum number of entries a 
cuckoo filter can contain is limited. After reaching the maxi-

# memory references lookup

Bits per item Load factor α Positive query Negative query

Space-optimized Bloom filter 1.44 log2(1/ϵ) − log2(1/ϵ) 2

(2,4)-cuckoo filter (log2(α/ϵ)+3)/α 95.5% 2 2

(2,4)-cuckoo filter w/ semi-sort (log2(α/ϵ)+2)/α 95.5% 2 2

Table 1: Space and lookup cost of Bloom filters and two cuckoo filters
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mum load factor, insertions are likely to fail and the hash table 
must expand in order to store more items. In contrast, one can 
keep inserting new items into a Bloom filter at the cost of an 
increasing false positive rate. To maintain the same target false 
positive rate, the Bloom filter must also expand.

Limited duplicate insertion: If the cuckoo filter supports 
deletion, it must store multiple copies of the same item. Inserting 
the same item kb+1 times will cause the insertion to fail. This 
is similar to counting Bloom filters where duplicate insertion 
causes counter overflow. In contrast, there is no effect from 
inserting identical items multiple times into Bloom filters, or a 
non-deletable cuckoo filter.

Evaluation
We implemented a cuckoo filter in approximately 500 lines of 
C++ (https://github.com/efficient/cuckoofilter). To evaluate its 
space efficiency and lookup performance, we ran micro-bench-
marks on a machine with Intel Xeon processors (L5640@2.27 
GHz, 12 MB L3 cache) and 16 GB DRAM.

Load factor: As discussed above, partial-key cuckoo hash-
ing relies on the fingerprint to calculate each item’s alternate 
buckets. To show that the hash table still achieves high occu-
pancy even when the hash functions are not fully independent, 

we built (2,4)-cuckoo filters using fingerprints of different sizes 
and measured the maximum load factor. We varied the finger-
print size from 2 bits to 16 bits, and each filter consists of 225 
(32 million) buckets. Keys are inserted to an empty filter until 
a single insertion relocates existing fingerprints more than 500 
times (our “full” condition); then we stop and measure the mean 
and variance of achieved load factor α. As shown in Table 2, 
when the fingerprint is smaller than six bits, the table utilization 
is low, because the limited number of alternate buckets causes 
insertions to fail frequently. Once fingerprints exceed six bits,  
α approaches the optimal (i.e., that achieved using two fully 
independent hash functions).

Space efficiency: We measured the achieved false positive 
rates of Bloom filters and (2,4)-cuckoo filters with and with-
out the semi-sorting optimization. When the Bloom filter uses 
13 bits per item, it can achieve its lowest false positive rate of 
0.20% with nine hash functions. With 12-bit fingerprints, the 
(2,4)-cuckoo filter uses slightly less space (12.53 bits/item), and 
its achieved false positive rate is 0.19%. When semi-sorting is 
used, a (2,4)-cuckoo filter can encode one more bit for each item 
and thus halve the false positive rate to 0.09%, using the same 
amount of space (12.57 bits/item).

Lookup Performance: After creating these filters, we also 
investigated the lookup performance for both positive and nega-
tive queries. We varied the fraction p of positive queries in the 
input workload from p=0% to 100%, shown in Figure 3. Each 
filter occupies about 200 MB (much larger than the L3 cache). 
The Bloom filter performs well when all queries are negative, 
because each lookup can return immediately after fetching the 
first “0” bit; however, its performance declines quickly when 
more queries are positive, because it incurs additional cache 
misses as it reads additional bits as part of the lookup. In con-
trast, a (2,4)-cuckoo filter always fetches two buckets in parallel, 
and thus achieves about the same, high performance for 100% 
positive queries and 100% negative queries. The performance 
drops slightly when p=50% because the CPU’s branch prediction 
is least accurate (the probability of matching or not matching is 

Figure 2: False positive rate vs. space cost per element. For low false posi-
tive rates (< 3%), cuckoo filters (CF) require fewer bits per element than 
the space-optimized Bloom filters (BF). The load factors to calculate space 
cost of cuckoo filters are obtained empirically.

Figure 3: Lookup performance for a space-optimized Bloom filter and a 
(2,4)-cuckoo filter with a single thread. Each point is the average of 10 runs.

f (bits) mean of α (gap to optimal) variance of α 

2 17.53%, (-78.27%) 1.39% 

4 67.67%, (-28.13%) 8.06% 

6 95.39%, (-0.41%) 0.10%

8 95.62%, (-0.18%) 0.18%

12 95.77%, (-0.03%) 0.11%

16 95.80%, (0.00%) 0.11%

Table 2: Load factor achieved by different f with (2,4)-cuckoo filter. Each 
point is the average of 10 runs.
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exactly 1/2). A (2,4)-cuckoo filter with semi-sorting has a similar 
trend, but it is slower due to the extra encoding/decoding over-
head when reading each bucket. In return for the performance 
penalty, the semi-sorting version reduces the false positive rate 
by half compared to the standard (2,4)-cuckoo filter. However, 
the cuckoo filter with semi-sorting still outperforms Bloom 
filters when more than 50% queries are positive.
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