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Most use of flash memory for caching so far has been on the storage 
server side. Using a trace-driven simulator we examined the use of 
flash as a large client-side cache. We found that the benefit of such 

a cache derives chiefly from its size, not the persistence of flash; but persis-
tent caches offer additional benefits. We also found that the cache can be 
write-through without harming performance, and that for some workloads it 
allows freeing up system RAM that would otherwise be needed for caching.

In recent years, flash memory has gained attention not only as a medium for storage but 
also as a component of storage system caches. Most such uses have been on the server side: 
flash deployed in direct combination with disks. Our study [1] examined the use of flash on 
the client side of a network, such as on the compute nodes in a cluster. This arrangement 
reduces access latency and network load at the cost of requiring a flash device on each node. 
For shared storage, it can also introduce cache consistency problems. We ran simulations to 
examine the range of possible designs of this type and their various costs and benefits.

In our system model (Figure 1), an application performs I/O into a RAM cache (the ordinary 
operating system disk cache), which connects in turn to a flash cache. These components 
access a file server across a network. Many scenarios, ranging from Web application servers 
to render-farm nodes, share this basic structure.

We treat the flash cache as a SATA-attached solid-state drive. PCI flash devices that behave 
like SATA-attached drives should give similar results. We also modeled the file server as a 
“smart” enterprise-grade filer with lots of fancy prefetching and caching logic. The flash 
cache will help plain disk arrays more as they are slower.

Design Space
We examined the tradeoffs that arise when designing a client-side flash cache. We asked 
four key questions: whether the flash cache can/should be write-through or write-back, the 
degree of integration with the operating system required, the cost/benefit of cache persis-
tence, and the need for cache consistency management.

The motivating question for this study was whether the flash cache can be write-through. 
With a write-through cache, managing crash recovery and maintaining cache consistency is 
easier; however, write-back caches generally perform better. We wanted to know the magni-
tude of this effect.

Another question was whether the flash cache must be integrated with the operating system 
and the operating system’s disk cache. An implementation that operates as an independent 
layer will be much easier to build and deploy; however, an integrated implementation might 
potentially perform much better, so we wanted to know what the tradeoffs would be.

The third question was whether the flash cache needs to survive crashes. A persistent cache 
must store recoverable cache metadata in the flash, as opposed to just using RAM; this cre-
ates additional overhead. On the other hand, as (re)filling a 64 GB cache to full effectiveness 
can take hours or even days, not making the cache persistent can lead to substantial periods 
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of reduced performance. We wanted to find out how much the 
performance would be reduced, and for roughly how long.

Finally, we wanted to know what the consequences would be 
for cache consistency management. We were chiefly concerned 
with serving private disk images, but shared storage volumes are 
also important.

As the design space produced from these questions is enormous, 
we chose to do a simulator-based study that would allow us to 
explore these tradeoffs relatively inexpensively.

Our simulator reads a trace of I/O events, where each event is a 
read or write access to a particular region of a file, done by a spe-
cific thread on one of perhaps many hosts. The traces we used for 
our study were statistically generated using a tool we wrote for 
the purpose. We did use some real traces to validate the simula-
tor against an existing implementation (NetApp’s Mercury); this 
allowed us to be reasonably confident that the simulator was 
producing plausible results.

Results
Our first result was not the answer to a design question but a 
rather more basic issue: whether a client-side flash cache is a 
win. It is; a client-side flash cache provides a fairly substantial 
benefit, both for medium-sized workloads that fit into the flash 
but do not fit into RAM and for large workloads that do not fit 
into even a large flash device.

Figure 2 shows the average latency seen by the application for 
read operations (per 4096-byte block) for a range of workload 
sizes and four different flash sizes. This is with an 8 GB RAM 
cache; the workloads are 30% writes and 70% reads. At the 
bottom left where the workload fits into the cache, a large flash 
cache offers in-cache performance for much larger workloads 
than possible without it; on the right where the workload is 5x to 
10x the flash size there is still a substantial benefit.

In this environment the file server’s prefetching performance 
is critical. The application’s read latency is dominated by reads 
that have to go all the way to disk. (This takes milliseconds and 
everything else is measured in microseconds.) If—by inserting 
a large cache in front of the filer—we hamper the filer’s ability 
to prefetch, we can easily lose most or all of the flash cache’s 
performance gain. We believe that adjusting the filer’s internal 
tuning can avoid this effect; however, deploying client-side flash 
caches in front of an old filer that does not know how to cope may 
not provide the benefit that one might expect.

The flip side of this issue is that the ability of a plain disk array 
to prefetch is negligible under all circumstances compared to a 
filer. So when the backend is a plain disk array, the flash cache 
offers a much greater benefit.

Our first design question above was whether the flash cache 
could be write-through or whether this hampers performance. 
Also, the RAM cache needs to write data back to the flash cache; 
policies that work well for disks might not be appropriate in this 
environment. To investigate this we implemented four simple 
cache write-back policies:

◆◆ Synchronous write-through: block the app until the write to  
the next layer is complete.

◆◆ Asynchronous write-through: start writing to the next layer 
 immediately, but do not block on it.

◆◆ Periodic: every so often a background thread writes out modi-
fied blocks.

◆◆ None: let the cache fill and write updates back only when evict-
ing old blocks.

Trying four different time periods for the periodic policy gives 
seven settings each for the RAM and flash caches, making forty-
nine cases in total.

Figure 1: System model Figure 2: Application read latency as a function of working set size
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The obviously silly policies, such as synchronously writing 
from the RAM cache while the application waits, perform badly. 
(“None” turns into “synchronous” once the cache fills and also 
performs badly.) Otherwise, we found (somewhat to our sur-
prise) that all other policies perform identically. The flash is 
large enough that as long as changes get written in some reason-
able way, there is plenty of room for new incoming data.

Consequently, we did not try anything more complicated. The 
conclusion is that the flash cache can be write-through without 
hurting performance. This makes dealing with cache consis-
tency for shared volumes much easier.

The second design question we addressed was whether the flash 
cache needs to be integrated with the operating system buffer 
cache. We compared the “naive architecture,” in which the flash 
appears as an independent layer underneath the RAM cache 
with no integration whatsoever, and the “unified architecture,” 
where the flash and RAM are fully integrated into a single cache 
framework. We found that the unified cache performed better 
for reads and worse for writes.

The chief difference between these models is that in the naive 
architecture the contents of the RAM cache become duplicated 
in the flash. The unified cache can avoid this and as a result 
becomes effectively larger. By tinkering with timings and set-
tings, we ascertained that the improved read performance of 
the unified cache was exactly due to this effect. Given the price 
of flash compared to the assorted costs of implementing and 
deploying a unified cache,  buying more flash is much cheaper.

Meanwhile, the worse write performance arose from an imple-
mentation issue: writes go to the next available block. With 8 
GB of RAM and 64 GB of flash, 8/9 of the blocks are flash; the 
average write latency seen by the application was 8/9 of the flash 
write latency. A smarter implementation could hide this latency.

Persistence
Much of the benefit of using flash for caching comes simply from 
its size and speed; however, because flash is persistent, an obvi-
ous question is whether the flash cache should be persistent as 
well. As discussed earlier, this has both benefits and costs.

To approximate the performance overhead, we doubled the 
 simulated time for writing to the flash: one write for the data  
and another write for metadata. This is pessimistic: in practice 
one can get away with much less metadata write traffic. There 
was no visible effect whatsoever on the application: given a 
reasonable policy for writing from the RAM cache to the flash 
cache, these writes happen in the context of the kernel’s back-
ground processes and are fully hidden from the application.

To investigate the benefit, we ran the same workloads on warmed 
and unwarmed caches. Normally we use the first half of each 
generated I/O trace to warm up the cache and collect timing data 
on the second half. For the unwarmed case, which is equivalent 
to crashing right before starting the workload, we skipped the 
first half instead.

The results are shown in Figure 3. This graph requires some 
explanation. It shows application read latency for three cases: 
no flash cache, an unwarmed flash cache, and a warmed flash 
cache. In our study we pegged the total run size of our traces 
to the working set size; each trace pushes through a volume 
of twice the working set size during the measurement phase. 
Therefore, for the smallest workloads (left side of the graph) the 
trace finishes long before the flash cache fills, and the behavior 
shown on the graph is the performance seen during the warming 
phase. Moving to the right, the traces become far larger than a 64 
GB flash, and the average behavior over the whole trace con-
verges to the behavior with a warm cache.

What this shows is that the performance with a cold cache 
is considerably worse than with a warm cache, but the cache 

Figure 3: Effect of persistence on application read latency Figure 4: Invalidations required as a function of working set size
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warms rapidly enough that having it is still better for all but the 
very shortest and smallest workloads. In simulator time, the 
smallest workload in this graph completed in less than ten min-
utes; the largest took about a day. The cross-over point between 
the no-flash and cold-flash lines corresponds to roughly 20–25 
minutes. How simulator time corresponds to real time in real-
life workloads is not so clear. Twenty minutes of simulator time 
might correspond to several hours of real time, depending on the 
intensity and concurrency of the workload.

The conclusion, however, is that while making the cache persis-
tent offers significant and noticeable performance gains, unless 
you plan to be crashing regularly it isn’t necessary to realize 
much of the cache’s performance gain.

Cache Consistency
As mentioned above we were primarily looking at serving private 
disk images; however, shared data is also important and cache 
consistency is a significant issue when handling it. This is a 
complex problem with complex solutions; we did not implement 
any particular cache consistency protocol in our simulator. 
Instead we used a simple scheme where the simulator took 
advantage of its own global knowledge to automatically invali-
date stale blocks wherever they appeared. The results we have, 
therefore, do not take into account the network traffic generated 
by a cache consistency protocol; but they do take into account 
the overhead caused by needing to re-fetch blocks that have 
become obsolete.

Figure 4 shows the percentage of writes that incurred an invali-
dation over a range of working set sizes. This is for two hosts 
sharing the same working set (a fairly adverse situation); as 
elsewhere, this is with an 8 GB RAM cache and 30% of the I/Os 
are writes.

For workloads that fit into the flash cache, upwards of 90% of 
write operations cause an invalidation. This is much higher than 
without the flash, even for the smallest workloads that fit into 
RAM. And for larger workloads, the invalidation rate drops off 
much more slowly.

This effect is potentially enough to affect the performance or 
scalability of existing cache consistency protocols. An additional 
problem arises for persistent caches of shared data: a host that 
is offline and rebooting cannot participate in an online cache 
consistency protocol and would need to be able to catch up 
afterwards.

Our study and our materials do not really examine consistency 
issues in detail; further work, including a detailed implementa-
tion of one or more specific protocols, is probably indicated. But 
we can tentatively conclude that with shared data, particularly 
broadly shared data and particularly for write-heavy workloads, 
consistency management overhead may erase most or all of the 
benefit of the client-side cache.

No RAM Cache
We came across an additional unexpected phenomenon: in at 
least some cases, it appears that cutting back the amount of 
RAM used for caching to (almost) zero makes sense. Figure 5 
shows the read and write latency seen by the application as the 
RAM size is reduced (moving right to left) from the default 8 GB 
down to 64 KB and then all the way to zero. For all points the 
flash size is 64 GB; the RAM-to-flash writeback policy has been 
changed to asynchronous write-through.

Notice that the write latency remains the same all the way 
down to 256 KB of RAM . . . and the read latency is effectively 
unchanged. The read latency is slightly worse compared to the 
largest RAM sizes, but this effect is negligible (around 2%).

Figure 5: Application read and write latencies with small RAM sizes and 
60 GB working set

Figure 6: Application read and write latencies with small RAM sizes and 5 
GB working set
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Upon reflection one might expect this result, because the work-
ing set is much larger than the RAM size and the hit rate in the 
RAM cache is miserably low. (With 8 GB of RAM the hit rate is 
about 14%; the flash hit rate is over 85%.) The effect appears to 
a surprising extent even in small workloads. Figure 6 shows the 
same thing, but for a 5 GB workload. The far right point is for 8 
GB of RAM, in which the working set fits completely. The pen-
alty here is about 25–30%. This is substantial, but it is not neces-
sarily fatal. There are almost certainly workloads where a 30% 
reduction in read performance is worth being able to repurpose 
8 GB of RAM; for example, there are many applications where an 
extra 8 GB will more than offset this penalty.

This tradeoff is made possible by the flash cache; without the 
flash, the cost of shrinking the RAM cache is not merely 25–30%; 
reads become some five times slower.

One of the less obvious reasons for this effect is that in our work-
loads, like most real workloads, some accessed data is outside the 
working set. These I/Os tend to miss in normal-sized caches; the 
flash is large enough to help with them.

We should also stress that this is something of a preliminary 
result, in that we are not yet sure how well it will translate to 
real-life workloads in real-life situations. But it certainly bears 
consideration.

Conclusions
The results of our simulations show that even the simplest form 
of client-side flash caching provides significant benefits to 
applications. We also identified a number of points that simplify 
the space of designs worth pursuing. First, it is perfectly fine 
from a performance standpoint for the flash cache to be write-
through, or to use any other reasonable write-back policy. Sec-
ond, there is no need to integrate the flash cache tightly with the 
operating system; the benefit of doing so is purely that the cache 
becomes slightly larger, but it is much cheaper to buy more flash. 
Third, much of the benefit of the flash cache can be gained with-
out making it persistent; however, persistence offers additional 
benefits, incurs little or no overhead in practice, and is probably 
worthwhile. Fourth, cache consistency becomes a serious issue 
with caches of this size if multiple hosts are actively modifying 
overlapping working sets. Even with a write-through cache, such 
workloads cause substantially more invalidation traffic than we 
see with traditional RAM-based caches. Traditional cache con-
sistency protocols may also not be able to cope with a persistent 
cache being offline during a reboot.
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