
30  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

Flash Caching on the Storage Client
D A V I D A . H O L L A N D , E L A I N E A N G E L I N O , G I D E O N W A L D ,
A N D M A R G O I . S E L T Z E R

David A. Holland is a researcher in software
systems at Harvard. His core research interest
is figuring out how to write better software,
which covers a broad range of projects and
applications. He wrote the OS/161 instructional
operating system. dholland@eecs.harvard.edu

Elaine Angelino is a Ph.D.
student in Computer Science
at Harvard SEAS. Her advisor
is Professor Margo Seltzer.
elaine@eecs.harvard.edu

Gideon Wald is an entrepreneur
living and working in San
Francisco. He was a product
manager at Google for three
years on Search and Chrome

before leaving to co-found a nascent company
in the enterprise software space.
gideon.wald@gmail.com

Margo Seltzer is the Herchel
Smith Professor of Computer
Science at Harvard’s School
of Engineering and Applied
Sciences, an architect at Oracle

Corporation, and the current USENIX board
President. Her research and commercial
activities revolve around all sorts of systems:
operating systems, database systems, file
systems, learning systems, etc.
margo@eecs.harvard.edu

Most use of flash memory for caching so far has been on the storage
server side. Using a trace-driven simulator we examined the use of
flash as a large client-side cache. We found that the benefit of such

a cache derives chiefly from its size, not the persistence of flash; but persis-
tent caches offer additional benefits. We also found that the cache can be
write-through without harming performance, and that for some workloads it
allows freeing up system RAM that would otherwise be needed for caching.

In recent years, flash memory has gained attention not only as a medium for storage but
also as a component of storage system caches. Most such uses have been on the server side:
flash deployed in direct combination with disks. Our study [1] examined the use of flash on
the client side of a network, such as on the compute nodes in a cluster. This arrangement
reduces access latency and network load at the cost of requiring a flash device on each node.
For shared storage, it can also introduce cache consistency problems. We ran simulations to
examine the range of possible designs of this type and their various costs and benefits.

In our system model (Figure 1), an application performs I/O into a RAM cache (the ordinary
operating system disk cache), which connects in turn to a flash cache. These components
access a file server across a network. Many scenarios, ranging from Web application servers
to render-farm nodes, share this basic structure.

We treat the flash cache as a SATA-attached solid-state drive. PCI flash devices that behave
like SATA-attached drives should give similar results. We also modeled the file server as a
“smart” enterprise-grade filer with lots of fancy prefetching and caching logic. The flash
cache will help plain disk arrays more as they are slower.

Design Space
We examined the tradeoffs that arise when designing a client-side flash cache. We asked
four key questions: whether the flash cache can/should be write-through or write-back, the
degree of integration with the operating system required, the cost/benefit of cache persis-
tence, and the need for cache consistency management.

The motivating question for this study was whether the flash cache can be write-through.
With a write-through cache, managing crash recovery and maintaining cache consistency is
easier; however, write-back caches generally perform better. We wanted to know the magni-
tude of this effect.

Another question was whether the flash cache must be integrated with the operating system
and the operating system’s disk cache. An implementation that operates as an independent
layer will be much easier to build and deploy; however, an integrated implementation might
potentially perform much better, so we wanted to know what the tradeoffs would be.

The third question was whether the flash cache needs to survive crashes. A persistent cache
must store recoverable cache metadata in the flash, as opposed to just using RAM; this cre-
ates additional overhead. On the other hand, as (re)filling a 64 GB cache to full effectiveness
can take hours or even days, not making the cache persistent can lead to substantial periods

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 31

SYSADMIN
Flash Caching on the Storage Client

of reduced performance. We wanted to find out how much the
performance would be reduced, and for roughly how long.

Finally, we wanted to know what the consequences would be
for cache consistency management. We were chiefly concerned
with serving private disk images, but shared storage volumes are
also important.

As the design space produced from these questions is enormous,
we chose to do a simulator-based study that would allow us to
explore these tradeoffs relatively inexpensively.

Our simulator reads a trace of I/O events, where each event is a
read or write access to a particular region of a file, done by a spe-
cific thread on one of perhaps many hosts. The traces we used for
our study were statistically generated using a tool we wrote for
the purpose. We did use some real traces to validate the simula-
tor against an existing implementation (NetApp’s Mercury); this
allowed us to be reasonably confident that the simulator was
producing plausible results.

Results
Our first result was not the answer to a design question but a
rather more basic issue: whether a client-side flash cache is a
win. It is; a client-side flash cache provides a fairly substantial
benefit, both for medium-sized workloads that fit into the flash
but do not fit into RAM and for large workloads that do not fit
into even a large flash device.

Figure 2 shows the average latency seen by the application for
read operations (per 4096-byte block) for a range of workload
sizes and four different flash sizes. This is with an 8 GB RAM
cache; the workloads are 30% writes and 70% reads. At the
bottom left where the workload fits into the cache, a large flash
cache offers in-cache performance for much larger workloads
than possible without it; on the right where the workload is 5x to
10x the flash size there is still a substantial benefit.

In this environment the file server’s prefetching performance
is critical. The application’s read latency is dominated by reads
that have to go all the way to disk. (This takes milliseconds and
everything else is measured in microseconds.) If—by inserting
a large cache in front of the filer—we hamper the filer’s ability
to prefetch, we can easily lose most or all of the flash cache’s
performance gain. We believe that adjusting the filer’s internal
tuning can avoid this effect; however, deploying client-side flash
caches in front of an old filer that does not know how to cope may
not provide the benefit that one might expect.

The flip side of this issue is that the ability of a plain disk array
to prefetch is negligible under all circumstances compared to a
filer. So when the backend is a plain disk array, the flash cache
offers a much greater benefit.

Our first design question above was whether the flash cache
could be write-through or whether this hampers performance.
Also, the RAM cache needs to write data back to the flash cache;
policies that work well for disks might not be appropriate in this
environment. To investigate this we implemented four simple
cache write-back policies:

◆◆ Synchronous write-through: block the app until the write to
the next layer is complete.

◆◆ Asynchronous write-through: start writing to the next layer
 immediately, but do not block on it.

◆◆ Periodic: every so often a background thread writes out modi-
fied blocks.

◆◆ None: let the cache fill and write updates back only when evict-
ing old blocks.

Trying four different time periods for the periodic policy gives
seven settings each for the RAM and flash caches, making forty-
nine cases in total.

Figure 1: System model Figure 2: Application read latency as a function of working set size

32  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

SYSADMIN
Flash Caching on the Storage Client

The obviously silly policies, such as synchronously writing
from the RAM cache while the application waits, perform badly.
(“None” turns into “synchronous” once the cache fills and also
performs badly.) Otherwise, we found (somewhat to our sur-
prise) that all other policies perform identically. The flash is
large enough that as long as changes get written in some reason-
able way, there is plenty of room for new incoming data.

Consequently, we did not try anything more complicated. The
conclusion is that the flash cache can be write-through without
hurting performance. This makes dealing with cache consis-
tency for shared volumes much easier.

The second design question we addressed was whether the flash
cache needs to be integrated with the operating system buffer
cache. We compared the “naive architecture,” in which the flash
appears as an independent layer underneath the RAM cache
with no integration whatsoever, and the “unified architecture,”
where the flash and RAM are fully integrated into a single cache
framework. We found that the unified cache performed better
for reads and worse for writes.

The chief difference between these models is that in the naive
architecture the contents of the RAM cache become duplicated
in the flash. The unified cache can avoid this and as a result
becomes effectively larger. By tinkering with timings and set-
tings, we ascertained that the improved read performance of
the unified cache was exactly due to this effect. Given the price
of flash compared to the assorted costs of implementing and
deploying a unified cache, buying more flash is much cheaper.

Meanwhile, the worse write performance arose from an imple-
mentation issue: writes go to the next available block. With 8
GB of RAM and 64 GB of flash, 8/9 of the blocks are flash; the
average write latency seen by the application was 8/9 of the flash
write latency. A smarter implementation could hide this latency.

Persistence
Much of the benefit of using flash for caching comes simply from
its size and speed; however, because flash is persistent, an obvi-
ous question is whether the flash cache should be persistent as
well. As discussed earlier, this has both benefits and costs.

To approximate the performance overhead, we doubled the
 simulated time for writing to the flash: one write for the data
and another write for metadata. This is pessimistic: in practice
one can get away with much less metadata write traffic. There
was no visible effect whatsoever on the application: given a
reasonable policy for writing from the RAM cache to the flash
cache, these writes happen in the context of the kernel’s back-
ground processes and are fully hidden from the application.

To investigate the benefit, we ran the same workloads on warmed
and unwarmed caches. Normally we use the first half of each
generated I/O trace to warm up the cache and collect timing data
on the second half. For the unwarmed case, which is equivalent
to crashing right before starting the workload, we skipped the
first half instead.

The results are shown in Figure 3. This graph requires some
explanation. It shows application read latency for three cases:
no flash cache, an unwarmed flash cache, and a warmed flash
cache. In our study we pegged the total run size of our traces
to the working set size; each trace pushes through a volume
of twice the working set size during the measurement phase.
Therefore, for the smallest workloads (left side of the graph) the
trace finishes long before the flash cache fills, and the behavior
shown on the graph is the performance seen during the warming
phase. Moving to the right, the traces become far larger than a 64
GB flash, and the average behavior over the whole trace con-
verges to the behavior with a warm cache.

What this shows is that the performance with a cold cache
is considerably worse than with a warm cache, but the cache

Figure 3: Effect of persistence on application read latency Figure 4: Invalidations required as a function of working set size

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 33

SYSADMIN
Flash Caching on the Storage Client

warms rapidly enough that having it is still better for all but the
very shortest and smallest workloads. In simulator time, the
smallest workload in this graph completed in less than ten min-
utes; the largest took about a day. The cross-over point between
the no-flash and cold-flash lines corresponds to roughly 20–25
minutes. How simulator time corresponds to real time in real-
life workloads is not so clear. Twenty minutes of simulator time
might correspond to several hours of real time, depending on the
intensity and concurrency of the workload.

The conclusion, however, is that while making the cache persis-
tent offers significant and noticeable performance gains, unless
you plan to be crashing regularly it isn’t necessary to realize
much of the cache’s performance gain.

Cache Consistency
As mentioned above we were primarily looking at serving private
disk images; however, shared data is also important and cache
consistency is a significant issue when handling it. This is a
complex problem with complex solutions; we did not implement
any particular cache consistency protocol in our simulator.
Instead we used a simple scheme where the simulator took
advantage of its own global knowledge to automatically invali-
date stale blocks wherever they appeared. The results we have,
therefore, do not take into account the network traffic generated
by a cache consistency protocol; but they do take into account
the overhead caused by needing to re-fetch blocks that have
become obsolete.

Figure 4 shows the percentage of writes that incurred an invali-
dation over a range of working set sizes. This is for two hosts
sharing the same working set (a fairly adverse situation); as
elsewhere, this is with an 8 GB RAM cache and 30% of the I/Os
are writes.

For workloads that fit into the flash cache, upwards of 90% of
write operations cause an invalidation. This is much higher than
without the flash, even for the smallest workloads that fit into
RAM. And for larger workloads, the invalidation rate drops off
much more slowly.

This effect is potentially enough to affect the performance or
scalability of existing cache consistency protocols. An additional
problem arises for persistent caches of shared data: a host that
is offline and rebooting cannot participate in an online cache
consistency protocol and would need to be able to catch up
afterwards.

Our study and our materials do not really examine consistency
issues in detail; further work, including a detailed implementa-
tion of one or more specific protocols, is probably indicated. But
we can tentatively conclude that with shared data, particularly
broadly shared data and particularly for write-heavy workloads,
consistency management overhead may erase most or all of the
benefit of the client-side cache.

No RAM Cache
We came across an additional unexpected phenomenon: in at
least some cases, it appears that cutting back the amount of
RAM used for caching to (almost) zero makes sense. Figure 5
shows the read and write latency seen by the application as the
RAM size is reduced (moving right to left) from the default 8 GB
down to 64 KB and then all the way to zero. For all points the
flash size is 64 GB; the RAM-to-flash writeback policy has been
changed to asynchronous write-through.

Notice that the write latency remains the same all the way
down to 256 KB of RAM . . . and the read latency is effectively
unchanged. The read latency is slightly worse compared to the
largest RAM sizes, but this effect is negligible (around 2%).

Figure 5: Application read and write latencies with small RAM sizes and
60 GB working set

Figure 6: Application read and write latencies with small RAM sizes and 5
GB working set

34  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

SYSADMIN
Flash Caching on the Storage Client

Upon reflection one might expect this result, because the work-
ing set is much larger than the RAM size and the hit rate in the
RAM cache is miserably low. (With 8 GB of RAM the hit rate is
about 14%; the flash hit rate is over 85%.) The effect appears to
a surprising extent even in small workloads. Figure 6 shows the
same thing, but for a 5 GB workload. The far right point is for 8
GB of RAM, in which the working set fits completely. The pen-
alty here is about 25–30%. This is substantial, but it is not neces-
sarily fatal. There are almost certainly workloads where a 30%
reduction in read performance is worth being able to repurpose
8 GB of RAM; for example, there are many applications where an
extra 8 GB will more than offset this penalty.

This tradeoff is made possible by the flash cache; without the
flash, the cost of shrinking the RAM cache is not merely 25–30%;
reads become some five times slower.

One of the less obvious reasons for this effect is that in our work-
loads, like most real workloads, some accessed data is outside the
working set. These I/Os tend to miss in normal-sized caches; the
flash is large enough to help with them.

We should also stress that this is something of a preliminary
result, in that we are not yet sure how well it will translate to
real-life workloads in real-life situations. But it certainly bears
consideration.

Conclusions
The results of our simulations show that even the simplest form
of client-side flash caching provides significant benefits to
applications. We also identified a number of points that simplify
the space of designs worth pursuing. First, it is perfectly fine
from a performance standpoint for the flash cache to be write-
through, or to use any other reasonable write-back policy. Sec-
ond, there is no need to integrate the flash cache tightly with the
operating system; the benefit of doing so is purely that the cache
becomes slightly larger, but it is much cheaper to buy more flash.
Third, much of the benefit of the flash cache can be gained with-
out making it persistent; however, persistence offers additional
benefits, incurs little or no overhead in practice, and is probably
worthwhile. Fourth, cache consistency becomes a serious issue
with caches of this size if multiple hosts are actively modifying
overlapping working sets. Even with a write-through cache, such
workloads cause substantially more invalidation traffic than we
see with traditional RAM-based caches. Traditional cache con-
sistency protocols may also not be able to cope with a persistent
cache being offline during a reboot.

Acknowledgments
This work was supported by NetApp. Additionally, James Len-
tini, Keith Smith, and Chris Small, all of NetApp, were tremen-
dously helpful in providing us with the means and expertise to
validate our simulator.

References
[1] D. A. Holland et al., “Flash Caching on the Storage Client,”
Proceedings of the 2013 USENIX Annual Technical Confer-
ence (San Jose, CA, 2013).

NOVEMBER 3-8, 2013 • WASHINGTON, D.C.

27th Large Installation System Administration Conference

Keynote Address: “Modern Infrastructure: The Convergence of Network,
Compute, and Data” by Jason Hoffman, Founder, Joyent

Join us for 6 days of practical training on topics
including:

 SRE Classroom: Non-Abstract Large
 System Design for Sysadmins by John
 Looney, Google

 Root Cause Analysis by Stuart Kendrick,
Fred Hutchinson Cancer Research Center

 PowerShell Fundamentals by Steven
 Murawski, Stack Exchange

 Introduction to Chef by Nathen Harvey,
Opscode

The 3-day Technical Program includes:

 Plenaries by Hilary Mason, bitly, and
Todd Underwood, Google

 Invited Talks by industry leaders such
as Ariel Tseitlin, Netflix; Jeff Darcy, Red
Hat; Theo Schlossnagle, Circonus; Matt
Provost, Weta Digital; and Jennifer Davis,
Yahoo!

 Paper presentations, workshops, vendor
exhibition, posters, Guru Is In sessions,
BoFs, and more!

Sponsored by in cooperation with LOPSA

Register by October 15 and save. Additional discounts are available!
www.usenix.org/lisa2013

New for 2013: The LISA Lab Hack Space!

