
28    D ece m b er 20 13  Vo l . 3 8 N o. 6 	 www.usenix.org

Mackerel: A Progressive School of
Cryptographic Thought
J u s t i n Tr o u t m a n a n d V i n ce n t R i jme n

Justin Troutman is a
cryptographer with research
interests in designing
authenticated encryption
constructions, optimizing the

user experience of cryptographic products, and
analyzing methodologies for signals intelligence.
He has worked with Microsoft, Google, Duke
University, and IEEE. He co-developed the
“green cryptography” strategy for minimizing
implementation complexity, while maximizing
cryptographic security, by recycling components
for multiple purposes. He is currently organizing
international workshops that explore topics such
as optimizing the effectiveness of cryptography
for journalists, and the intersection between
real-world cryptographic design and experience
design.
justin@justintroutman.com

Vincent Rijmen is professor with
the Department of Electrical
Engineering at the University
of Leuven and the security
department of the research

institute iMinds (Belgium). He is co-designer
of the algorithm Rijndael, which has become
the Advanced Encryption Standard (AES),
standardized by the US National Institute for
Standards and Technology (NIST) and used
worldwide, e.g., in IPSec, SSL/TLS, and other
IT-security standards. Rijmen is also co-
designer of the WHIRLPOOL cryptographic
hash function, which is standardized in ISO/
IEC 10118-3. Recent research interests include
security of hash functions, design of methods
for secure hardware implementations and
novel applications of computer security.
vincent.rijmen@esat.kuleuven.be

Troutman and Rijmen offer a framework for creating and fielding new security systems involving
cryptography. Without this or a similar framework to coordinate efforts between different stake-
holder communities, we are doomed to continue providing systems that provide less than expected,
take too long from conceptual birth to fielding, and still leave us at unacceptable risk.

Their framework is “chunked” to nicely fit the natural flow of effort from cryptographers to develop-
ers to users; this allows each profession to maximize its strengths and not be unnecessarily befud-
dled by work going on in sister professions that are also needed to complete full delivery of effective
systems—systems that can be deployed and safely used by customers with minimal training.

Is this work perfect and fully fleshed out? NO. Is it a big step in the right direction? I think YES! Read
and enjoy; it is an easy read that should plant interesting concepts in your mind that will take root
and grow, leading to further needed developments.

—Brian Snow, former Technical Director of Information Assurance at NSA.

Cryptography is hard, but it’s the easy part. It’s an entanglement of
algorithms and assumptions that only a cryptographer would find
poetic, and we’re at a point where strong cryptography is arguably the

most robust aspect of a system’s security and privacy posture. To a consumer,
however, cryptography is still an esoteric sort of black magic whose ben-
efits are out of reach. Developers: If you feel we’ve dropped the ball on safely
implementing cryptography—which we have, and horribly so—this doesn’t
hold a candle to how pitifully we’ve failed at interfacing the benefits of cryp-
tography to consumers. Our contribution to potentially solving this problem,
dubbed Mackerel, is a design and development framework for developers
that’s based on the premise that real-world cryptography is not about cryptog-
raphy; it’s about products.

First, let’s look at a process that works, and with which most of us are familiar: buying and
driving an automobile. You decide it’s time to buy a new vehicle, so you drive to the nearest
car lot of your choice. You’re greeted by a friendly salesman who wants nothing more than
to put you in a new car that day. He needs to sell and you need to buy, so today might be a
double-win for both of you. You tell him that with today’s gas prices, you need something that
gets good mileage, but that you also need something with decent towing capabilities, since
you pull a camper to your favorite campground in the mountains. Oh, and with three kids and
in-laws, you need a third row of seating. Using his oracle-like knowledge of vehicle statistics,
the salesman walks you over to a sporty, yet eco-friendly, SUV that strikes the right bal-
ance for all your requirements. You feel the leather seats, admire the hands-free navigation
system, and even take it for a test drive. A credit check and some paperwork later, and you’re
pulling out of the lot in your brand new set of wheels.

When you sit in the car, you shut the door, and (hopefully) buckle up, then proceed to insert
the key into the ignition switch, turn it, and the process of internal combustion automagi-
cally happens before you. You shift into the appropriate gear, press your foot on the accelera-
tor pedal, and you’re off. At no point did you have to understand the mechanics of the vehicle
or the process of internal combustion; you simply had to insert a key, turn it, shift a knob, and
step on a pedal. In front of you are several indicator lights that give you visual and aural cues

www.usenix.org	   D ece m b er 20 13  Vo l . 3 8 N o. 6  29

SECURITY
Mackerel: A Progressive School of Cryptographic Thought

that something needs attention. It lets you know if you’re about
to run out of gas, need an oil change, or if it’s something that you
should probably have a mechanic check out (“check engine”).
You’re able to thoroughly enjoy and benefit from the wonder of
the automobile, without understanding the physics or mechan-
ics; at the most, your experience as a user involves limited
engagement with an intuitive user interface.

So, how can the cryptographic process learn from the consumer
automobile experience? Well, we’ve stated that in order to prop-
erly realize the benefits of cryptography as a product, we need to
employ the right process—one that respects the roles of people
involved. These aforementioned people make up three groups:
cryptographers, developers, and consumers. The first mistake,
and the cardinal sin, is trying to get everyone on the same page.
It’s a true exercise in futility because cryptography looks dif-
ferent as it flows from cryptographer to developer to consumer.
They each assume distinct roles that require different types
of expertise. Ideally, what we want is a process that respects
these roles and doesn’t ask them to make decisions outside of
their realm of expertise. Tragically, it rarely ever happens this
way, and we devolve into a modern-day Tower of Babel, trying
to collectively build something without having a clue as to what
the other is saying. To remedy this, it’s paramount that we notice
the two relationships that exist here—cryptographer-to-devel-
oper and developer-to-consumer—where keeping a tight bond
between the former is necessary for underlying implementation
assurance (think mature and minimalist API), while doing so
for the latter is necessary for user interface accessibility (think
tactile and palatable GUI).

Cryptographer-to-Developer Relationship
Let’s start with the cryptographer-to-developer relationship.
Cryptographers need to approach developers with a particular
golden rule in mind: cryptographic implementations usually fall
apart at the implementation level, not at the cryptographic level.
What this really means is that cryptographers need to create and
promote a more benign surface for developers. It’s not just about
making it easy to get things right; it’s even more about making
things hard to get wrong. One way to achieve that is through
what we call “green cryptography” [1, 2, 3] (extended drafts at
justintroutman.com), which calls for the recycling of mature
and minimalist components whenever and wherever it makes
sense; for example, you can do authenticated encryption (and
you should always be doing both authentication and encryp-
tion) with a single primitive, like the Advanced Encryption
Standard (AES), by using Counter mode (CTR) for encryption
and Cipher-based Message Authentication Code (CMAC) for
authentication. Or even easier to implement would be an Authen-
ticated Encryption with Associated Data mode (AEAD), which
handles both encryption and authentication without the need for
two separate modes. EAX (Encryption and Authentication with

Associated Data), for example, is essentially a combination of
CTR and One-key Cipher Block Chaining Message Authentica-
tion Code (OMAC1; equivalent to CMAC), but doesn’t require
that you manually combine CTR and CMAC; EAX kills two
figurative birds with one stone. Not only that, but this particular
construction gives you two of the strongest notions of confiden-
tiality and integrity that we have: indistinguishability against
Adaptive Chosen-Ciphertext Attacks (IND-CCA2) and Integrity
of Ciphertexts (INT-CTXT). Here’s a memo you should never
say you didn’t get: the order of encryption and authentication
matters, and it follows that encrypting the plaintext, first, then
authenticating the resulting ciphertext, second, is the easiest
to get right, hardest to get wrong, and comes with the tightest
notions of confidentiality and integrity.

There have also been recent attempts to build cryptographic
APIs for developers that make things easier for developers
to safely implement, such as Keyczar [4] from Google’s secu-
rity team. It achieves this safety by choosing secure default
parameters (e.g., block ciphers and key lengths), and automati-
cally taking care of consequential things such as key rotation
and IV generation; this is that “benign” surface we mentioned
earlier. And speaking of implementation failure as the likely
center of catastrophe, there’s a class of attacks that preys on the
actual software and hardware implementations of cryptogra-
phy, dubbed “side-channel attacks,” in which everything from
timing differences to power fluctuations can leak information
about plaintext and keys. Fortunately, there’s a library with
side-channel attack resistance in mind called NaCl (a refer-
ence to cryptographic “salt”); with NaCl [5], although you can
use standards such as the AES, you have the option of using
Daniel J. Bernstein’s own cryptographic primitives, such as the
fast stream cipher Salsa20 [6], for encryption; there’s also the
secure message authentication code (MAC), called Poly1305-
AES [7], which, although specified for the AES, can be used
with other drop-in replacement ciphers. Keyczar and NaCl are
important steps toward safer implementations, but they are far
from ideal and represent an inch in the miles we need to go. Only
by strengthening the relationship between cryptographers and
developers can we get there.

Developer-to-Consumer Relationship
Now, let’s tackle the developer-to-consumer relationship.
Cryptographic software is the quintessential martyr of usability
deprivation, a Rube Goldbergian gauntlet of epic distortion. (For
our readers from the UK, “Heath Robinsonian.” In fact, that’s
probably the most appropriate name to use, given the crypto-
graphic context.) In [8], they capture most of the reasons why
PGP (Pretty Good Privacy) and, by extension, its open source
cousin, GPG (GNU Privacy Guard) share the role as poster chil-
dren for tremendously useful ideas that, although used fervently
by some, elude the majority of consumers because of their lack

30    D ece m b er 20 13  Vo l . 3 8 N o. 6 	 www.usenix.org

SECURITY
Mackerel: A Progressive School of Cryptographic Thought

of tactility and palatability and by asking consumers to make
configuration decisions far outside their expertise. To be fair,
PGP was as novel as it was timely, because at that instant, back
when cryptography was a munition, we finally had something
that didn’t previously exist: a way to keep our email conversa-
tions secure and private, with strong cryptography. The point is
that it predated the era of usable security and privacy research,
and to this day, we still haven’t improved much on making it easy
to benefit from cryptography. Having said that, we have made
strides in recent years when it comes to mediating the marriage
of usability with security and privacy tools; in fact, there are aca-
demic laboratories focused on it (e.g., Carnegie Mellon’s CyLab
Usable Privacy and Security Lab, or CUPS) and conferences
dedicated to it (e.g., Symposium on Usable Privacy and Security,
or SOUPS). These are pioneering efforts that must exist, and
we’re better for them; on the other hand, cryptography is such
a niche subset of security and privacy, and the focus of only a
minute portion of this research.

In actuality, to channel [9], “usable cryptography” is as much of
an oxymoron as it is manifest destiny; in fact, it’s the benefits
of cryptography that we should strive for as manifest destiny.
Cryptography, itself, as a usable thing, doesn’t exist; the utility
of cryptography and the usability of a product that implements
cryptography exist on entirely different planes. “Usable cryptog-
raphy” is akin to saying “usable internal combustion.” Consum-
ers don’t want internal combustion; they want to drive. Just like
internal combustion, cryptography is an implementation detail
that shouldn’t be exposed to the consumer. That’s right, consum-
ers rarely, if ever, want cryptography directly; they need what
it provides, but that’s an entirely different problem. What the
consumer actually wants is a useful product, where usefulness
(“what am I getting out of this?”) is determined by utility (“what
does it do?”) and usability (“how easily can I do it?”).

To exhibit Mackerel as a philosophy for guiding product design,
imagine that you’re a journalist working under turbulent condi-
tions, in an oppressive environment, and you need to commu-
nicate securely and privately with your source; you need an app
for your smartphone, and such an app must optimize tactility
and palatability, by focusing on: (1) zero learning curve (works
with little to no training), (2) rapid-fire accessibility (works
intuitively and like the apps you’re used to), and (3) minimal code
footprints (to simplify, and encourage, third-party auditing). A
high-level API could be used to abstract away low-level compo-
nents, while being conscious of side-channel attacks. Such an
API could rest inside of a tactile and palatable GUI that caters
to the desires of the user, without exposing you to the complex
internals. Ultimately, you need to talk; you need to do it quickly;
and, you need to do it easily. It’s imperative that the design
enables you, not hinders you. If we expose the cryptography to
you, we’re creating a barrier between the app and what you really

want to do. Although you need what cryptography provides, it
can’t get in the way of you doing your job.

What We Need
We don’t need better encryption; we need a better experience. As
renowned experience designer Aral Balkan captured in his talk
for Thinking Digital 2013, “Superheroes and Villains in Design”:
as users, we should approach design naively and let it tell us how
it wants to be used. When we do this, we recognize the product
for what it is, the expert; we should be able to trust it to make the
right decisions and give us the affordances we expect. In the case
of the journalist above, this implies several things about the user
experience. Everything matters. You’ll need to consider the right
background and foreground colors, and typefaces as well, to
prevent eye fatigue from straining to see what’s being displayed.
Also, you’ll have to think about the average size of fingertips so
as to prevent misfires; seconds lost to poor interaction can be
costly. Oh, and the arrangement of objects on the display is a big
deal, too; an object’s function should be obvious. And then there’s
the fact that this journalist is likely to be in vastly different
cultures. With that in mind, the symbols and colors you use must
make sense within the context of the culture with which the
source identifies.

The design should anticipate the needs of its users; the experi-
ence should fulfill their wants. The journalist doesn’t want to
encrypt and authenticate the data channel between himself and
the source; the journalist wants to safely talk to his source. He
needs the former, but wants the latter. Balkan’s forthcoming
project, Codename Prometheus, is focused on experience design
in the consumer space, with a strong emphasis on protecting
security, privacy, and human rights. This is a big step in the right
direction of cultivating the experience for the consumer and
solving the conceptual problems they care about (e.g., how can
I communicate conveniently, but safely?), without burdening
them with our own problems regarding the details (e.g., how can
I make this app encrypt and authenticate communications?).

What all of this is trying to tell us is that we’ve been taking a
monolithic approach to development for far too long. It’s simply
not enough for cryptographers to help developers properly imple-
ment; that’s only one-half of real-world cryptographic design.
What we absolutely must have are experience designers helping
developers properly interface. Ignoring this carries on the tired,
hapless campaign of “cryptography for the masses,” which didn’t
materialize into the cypherpunk dream; by inviting it, however,
we have a fair shot at helping those masses benefit from cryptog-
raphy. In the cryptographer-to-developer relationship, cryptog-
raphers have the ability to work with developers on this problem;
in the developer-to-consumer relationship, the consumer hasn’t
the expertise to work with the developer. Experience designers
do, however; they speak to the needs and wants of the consumer

www.usenix.org	   D ece m b er 20 13  Vo l . 3 8 N o. 6  31

SECURITY
Mackerel: A Progressive School of Cryptographic Thought

on their behalf. In other words, developers have a chance at
getting the implementation right with cryptographers around;
without experience designers around, however, there’s little hope
of them getting the interface right.

A Fish Called Mackerel
Mackerel is a cryptographic design paradigm that posits that
practical cryptography is essentially a subset of product design.
And because it’s about products, it’s about people, and the need
for a holistic product design process that respects the roles of
the people involved—cryptographers, developers, and consum-
ers—by only asking them to make decisions that lie within their
respective areas of understanding, and of which they understand
the consequences. Ultimately, by focusing on the cryptographer-
to-developer and developer-to-consumer relationships, the
outcome will render the assurance of the underlying implemen-
tation, as well as the accessibility of the user interface, resulting
in a product that’s useful, by offering both utility and usability to
the consumer, and that behaves securely and privately. In short,
Mackerel is a developer-centric, consumer-targeted “concep-
tion-to-cellophane” approach to building a cryptographically
enhanced product from the ground up; the goal is to optimize the
GUI (interface accessibility) and API (implementation assur-
ance), by looking at tried-and-true elements from both product
design and security engineering.

The Mackerel framework is intended to operate similarly to a
software development framework, where the design and devel-
opment of a cryptographic product is modeled as a dissection of
individual components that, although they all affect the overall
goal of security and privacy, often require distinct approaches.
For example, within this framework would be cryptographic
threat modeling, where the intended application of a product and
its operating environment are considered in order to determine
applicable attacks and the appropriate cryptographic mea-
sures for mitigating them. This is clearly a security and privacy
problem with a security and privacy answer; however, as the
framework shifts from low-level to high-level, where you’re
dealing with usability factors and the overall experience of the
product, you’re dealing with a problem that can’t be answered by
security and privacy experts. (If we try to do so, we risk PGP 2.0:
hard to break, but hard to use.) It can be answered by usability
experts and those who design experiences for a living, which
is what has been missing in the modern day process. Although
a bad interface and experience can lead to a poor security and
privacy decision, this doesn’t mean the interface and experience
are security and privacy problems or can be solved as such; it

means that we can’t solve the interface and experience problems
without experts in those areas working alongside security and
privacy experts. We currently having nothing of the sort, let
alone a framework that involves both.

Once you birth cryptography into the real world, it becomes
a small component in a large composite that has more non-
cryptographic parts than cryptographic ones; having said that,
you can’t build a good cryptographic product if you involve
cryptographers but not product designers. You certainly can’t
build a good cryptographic product if you think it’s entirely a
cryptographic problem, or even entirely a security and privacy
problem. Mackerel models every core aspect of cryptography’s
evolution as a product, such that optimal decisions can be made,
given the state-of-the-art know-how in cryptographic design,
software development, and user experience design.

Lastly, let’s tell you why Mackerel is called “Mackerel.” At first
glance, it might seem like just another entry into cryptography’s
long list of systems named after fish. Well, that’s partially true,
but there’s a bit more. Integrity is as important a goal as confi-
dentiality, if not sometimes more. After all, breaking confiden-
tiality is the ability to passively eavesdrop, whereas breaking
integrity is the ability to actively manipulate. You can imagine
how the latter can render far worse results than the former, and
even result in the loss of both. So, although encryption is sup-
posed to handle confidentiality, it often can’t, without authenti-
cation, and the standard way to go about that is through the use
of a MAC, or message authentication code. If there’s anything
out of all of this research that we hope you learn, from a crypto-
graphic point of view, it’s that you should always use a MAC, or
an AEAD mode that does both encryption and authentication, or
die trying.

In order to pay homage to the glorious yet underappreciated
MAC, it was befitting to choose as a moniker the fish whose
name begins with “mac”: the mackerel.

Acknowledgments
We immensely thank the vast number of people whose eyes and
ears have been so graciously loaned over the past five years since
our work on “green cryptography” first emerged. A distinguished
thanks to Brian Snow for supporting our vision and for helping
to shape it with his uncanny know-how and grasp of the level
of assurance and accessibility we should expect from a crypto-
graphic product.

32    D ece m b er 20 13  Vo l . 3 8 N o. 6 	 www.usenix.org

SECURITY
Mackerel: A Progressive School of Cryptographic Thought

References
[1] J. Troutman and V. Rijmen, “Green Cryptography: Cleaner
Engineering through Recycling,” IEEE Security and Privacy,
vol. 7 (2009), pp. 71-73.

[2] J. Troutman and V. Rijmen, “Green Cryptography: Cleaner
Engineering through Recycling, Part 2,” IEEE Security and
Privacy, vol. 7 (2009), pp. 64-65.

[3] J. Troutman, “Green Cryptography”: extended drafts can be
found at http://justintroutman.com, 2013.

[4] A. Dey and S. Weis, “Keyczar: A Cryptographic Toolkit,” 2008.

[5] D. J. Bernstein, T. Lange, and P. Schwabe, “The Security
Impact of a New Cryptographic Library,” Cryptology ePrint
Archive, Report 2011/646, 2011: http://eprint.iacr.org.

[6] D. J. Bernstein, “The Salsa20 Family of Stream Ciphers,”
in New Stream Cipher Designs (Springer-Verlag Berlin, 2008),
pp. 84-97.

[7] D. J. Bernstein, “The Poly1305-AES Message-Authentication
Code,” in Fast Software Encryption (2005), pp. 32-49.

[8] A. Whitten and J. D. Tygar, “Why Johnny Can’t Encrypt,”
Proceedings of the 8th USENIX Security Symposium, 1999.

[9] M. E. Zurko and A. S. Patrick, “Panel: Usable Cryptography:
Manifest Destiny or Oxymoron?,” in Financial Cryptography
(2008), pp. 302-306.

APRIL 2–4, 2014 • SEATTLE, WA

11th USENIX Symposium on Networked Systems
Design and Implementation

Join us in Seattle, WA, April 2-4, 2014, for the 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’14). NSDI focuses on the design principles, implementation,
and practical evaluation of networked and distributed systems. Our goal is to bring together
researchers from across the networking and systems community to foster a broad approach to
addressing overlapping research challenges.

Program Co-Chairs: Ratul Mahajan, Microsoft Research, and Ion Stoica, University of California,
Berkeley

www.usenix.org/conference/nsdi14

SAVE THE DATE!

