
34    A P R I L 20 13  VO L . 3 8 N O. 2 	 www.usenix.org

Some Easily Overlooked But Useful
Python Features
D A V I D B E A Z L E Y

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,

2009). He is also known as the creator of Swig
(http://www.swig.org) and Python Lex-Yacc
(http://www.dabeaz.com/ply/index.html).
Beazley is based in Chicago, where he also
teaches a variety of Python courses. 
dave@dabeaz.com

For the past eight months, I’ve been locked away in my office working
on a new edition of the Python Cookbook (O’Reilly & Associates). One
of the benefits of writing a book is that you’re forced to go look at a lot

of stuff, including topics that you think you already know. For me, the Cook-
book was certainly no exception. Even though I’ve been using Python for a
long time, I encountered a lot of new tricks that I had never seen before. Some
of these were obviously brand new things just released, but many were fea-
tures I had just never noticed even though they’ve been available in Python
for many years.

So, in this article, I’m going to take a tour through some of these easily overlooked features
and show a few examples. Most of these features are extremely short—often one-liners that
you can start using in your code. There’s no particular order to the discussion; however, I do
assume that you’re using the latest version of Python, which is currently version 3.3. Many of
the features presented will work in older versions, too.

Checking the Beginning and End of Strings
Sometimes you need to check the beginning or end of a string quickly to see whether it
matches some substring. For example, maybe you’ve written some code that checks a URL
like this:

Check a URL for HTTP protocol

if url[:5] == ‘http:’ or url[:6] == ‘https:’:

 …

Alternative using a regex

 if re.match(‘(http|https):’, url):

 ...

Sure, both solutions “work,” but they’re not nearly as simple as using the startswith() or
endswith() method of a string. Just supply a tuple with all of the possible options you want to
check. For example:

if url.startswith((‘http:’, ‘https:’)):

 ...

Not only does this solution involve very little code, it runs fast and it’s easy to read; however,
you only get that benefit if you know that you can do it in the first place.

Tricks with format()
While I was teaching a training course a few years back, somebody pulled me aside to test me
on their favorite job interview question for Python programmers. The problem was to write
code that formatted an integer with the thousands comma separator properly placed in the
right positions. I can only assume that he wanted me to write a solution like this:

www.usenix.org	   A P R I L 20 13  VO L . 3 8 N O. 2  35

COLUMNS
Some Easily Overlooked But Useful Python Features

>>> x = 1234567890

>>> print(‘,’.join(reversed([str(x)[::-1][n:n+3][::-1]

 for n in range(0,len(str(x)),3)])))

1,234,567,890

>>>

Such problems are so much easier to solve if you just use for-

mat() like this:

>>> print(format(x, ‘,’))

1,234,567,890

>>>

Ah, yes. That’s much nicer. format() also works in ways that you
might not expect with certain sorts of objects. For example, you
can use it to format dates:

>>> from datetime import datetime

>>> d = datetime(2012, 12, 21)

>>> format(d, ‘%a, %b %d %m, %Y’)

‘Fri, Dec 21 12, 2012’

>>> format(d, ‘%a, %b %d, %Y’)

‘Fri, Dec 21, 2012’

>>> print(‘The apocalypse was on {:%Y-%m-%d}’.format(d))

The apocalypse was on 2012-12-21

>>>

Faster Date Parsing
On the subject of dates, I’ve recently learned that the common
built-in function strptime() is dreadfully slow if you ever need to
use it to parse a lot of dates. For example, suppose you were pars-
ing a lot of date strings like this:

s = ‘16/Oct/2010:04:09:01’

The easiest way to parse it is to use datetime.strptime(). For
example:

>>> import datetime

>>> d = datetime.strptime(s, ‘%d/%b/%Y:%H:%M:%S’)

>>> d

datetime.datetime(2010, 10, 16, 4, 9, 1)

>>>

If you didn’t know about such a function, you might be inclined
to roll your own custom date parsing function from scratch. For
example:

import calendar

months = {name:num for num, name in enumerate(calendar.

month_abbr)}

def parse_date(s):

 date, _, time = s.partition(‘:’)

 day, mname, year = date.split(‘/’)

 hour, minute, second = time.split(‘:’)

 return datetime(int(year), months[mname], int(day),

 int(hour), int(minute), int(second))

Here’s an example of using the above function:

>>> d = parse_date(s)

>>> d

datetime.datetime(2010, 10, 16, 4, 9, 1)

>>>

More often than not, creating your own implementation of
a function already built in to Python is a recipe for failure;
however, not so in this case. It turns out that the custom parse_

date() function runs nearly six times faster than strptime().
That kind of improvement can be significant in programs that
are performing a lot of date parsing (e.g., parsing dates out of
huge log files, data files, etc.).

One of the reasons strptime() is so slow is that it’s actually writ-
ten entirely in Python. Because it has to do a lot more work, such
as interpreting the format codes, it’s always going to be slower
than a custom-crafted implementation aimed at a very specific
date format.

New Time Functions
Not all is lost in the time module, however. Python recently
picked up new timing-related functions. For making perfor-
mance measurements, you can use the new time.perf_counter()
function. For example:

import time

start = time.perf_counter()

...

end = time.perf_counter()

print(‘Took {} seconds’.format(end-start))

perf_counter() measures elapsed time using the most accu-
rate timer available on the system. This eliminates some of the
guesswork from benchmarking as common functions such as
time.time() or time.clock()often have platform-related differ-
ences that affect their accuracy and resolution.

Similarly, the time.process_time() function can be used to mea-
sure elapsed CPU time. For example:

import time

start = time.process_time()

...

end = time.process_time()

print(‘Took {} CPU seconds’.format(end-start))

Last, but not least, the time.monotonic() function provides a
monotonic timer where the reported values are guaranteed
never to go backward—even if adjustments have been made to
the system clock while the program is running.

36    A P R I L 20 13  VO L . 3 8 N O. 2 	 www.usenix.org

COLUMNS
Some Easily Overlooked But Useful Python Features

All three of these time-related functions are only usable for
working with time deltas. That is, you use them to compute time
differences as shown. Otherwise, the value returned, although
having a unit of seconds, doesn’t have any useful meaning and
may vary by platform.

Creating a File Only If It Doesn’t Exist
Suppose you wanted to write to a file, but only if it doesn’t exist.
This is now easy in Python 3.3. Just give the ‘x’ file mode to
open() like this:

>>> f = open(‘newfile.txt’, ‘x’)

>>> f.write(‘Hello World’)

>>> f.close()

>>>

>>> f = open(‘newfile.txt’, ‘x’)

Traceback (most recent call last):

 File “”, line 1, in

FileExistsError: [Errno 17] File exists: ‘newfile.txt’

>>>

Although it’s a simple feature, this saves you from first having to
test like this:

import os.path

if not os.path.exists(filename):

 f = open(filename, ‘w’)

else:

 raise FileExistsError(‘File exists’)

System Exit with Error Message
When writing scripts, it is common to follow a convention of
writing a message to standard error and returning a non-zero
exit code to report a failure. For example:

import sys

if must_die:

 sys.stderr.write(‘It failed!\n’)

 raise SystemExit(1)

It turns out that all of the above code, including the import state-
ment, can just be replaced by the following:

if must_die:

 raise SystemExit(‘It failed!’)

This writes the message to standard error and exits with a code
of 1. Who knew it was that easy? I didn’t until recently.

Getting the Terminal Width
Sometimes you’d like to get the terminal width so that you can
properly format text for output. To do this, you can try to fiddle
around with environment variables, TTYs, and other details.

Alternatively, you could just use the new os.get_terminal_

size() function. For example:

>>> import os

>>> sz = os.get_terminal_size()

>>> sz.columns

108

>>> sz.lines

25

>>>

On the subject of formatting text for a terminal, the textwrap
module can be useful. For example, suppose you had a long line
of text like this:

s = “Look into my eyes, look into my eyes, the eyes, the eyes, \

the eyes, not around the eyes, don’t look around the eyes, \

look into my eyes, you’re under.”

You can use textwrap.fill() to reformat it:

>>> import textwrap

>>> print(textwrap.fill(s, 70))

Look into my eyes, look into my eyes, the eyes, the eyes, the

eyes,

not around the eyes, don’t look around the eyes, look into my

eyes,

you’re under.

>>> print(textwrap.fill(s, 40))

Look into my eyes, look into my eyes,

the eyes, the eyes, the eyes, not around

the eyes, don’t look around the eyes,

look into my eyes, you’re under.

Interpreting Byte Strings as Large Integers
Recently, I was working on a problem where I needed to parse
and manipulate IPv6 network addresses such as “1234:67:89:aab
b:43:210:dead:beef”. I thought about writing some custom pars-
ing code, but realized that it’s probably better to do it using func-
tions in the socket module:

>>> addr = “1234:67:89:aabb:43:210:dead:beef”

>>> import socket

>>> a = socket.inet_pton(socket.AF_INET6, addr)

>>> a

b’\x124\x00g\x00\x89\xaa\xbb\x00C\x02\x10\xde\xad\xbe\xef’

>>>

Yes, this “parsed” the IPv6 address, but it returned it as a
16-character byte-string representation of the 128-bit integer
value. This is not quite what I had hoped for, so how was I going
to turn such a string into a large integer value? It turns out it’s
trivial. Just use int.from_bytes() like this:

www.usenix.org	   A P R I L 20 13  VO L . 3 8 N O. 2  37

COLUMNS
Some Easily Overlooked But Useful Python Features

>>> int.from_bytes(a, ‘big’)

24196111521439464807328179944418033391

>>>

The second argument to from_bytes() is the byte order. Simi-
larly, if you have a large integer value, you can go the other direc-
tion like this:

>>> x = 123456789012345678901234567890

>>> x.to_bytes(16, ‘little’)

b’\xd2\n?N\xee\xe0s\xc3\xf6\x0f\xe9\x8e\x01\x00\x00\x00’

>>> x.to_bytes(20, ‘little’)

b’\xd2\n?N\xee\xe0s\xc3\xf6\x0f\xe9\x8e\x01\x00\x00\x00\

x00\x00\x00\x00’

>>> x.to_bytes(20, ‘big’)

b’\x00\x00\x00\x00\x00\x00\x00\x01\x8e\xe9\x0f\xf6\xc3s\

xe0\xeeN?\n\xd2’

>>>

Manipulating Network Addresses
On the subject of manipulating network addresses, it became a
whole lot easier in Python 3.3 with the addition of a new ipad-
dress library. Here’s a short example of representing an IPv4
network and printing a list of all of the hosts contained within it:

>>> import ipaddress

>>> net = ipaddress.IPv4Network(‘192.168.2.0/29’)

>>> net.netmask

IPv4Address(‘255.255.255.248’)

>>> for n in net:

... print(n)

...

192.168.2.0

192.168.2.1

192.168.2.2

192.168.2.3

192.168.2.4

192.168.2.5

192.168.2.6

192.168.2.7

>>> a = ipaddress.IPv4Address(‘192.168.2.14’)

>>> a in net

False

>>> str(a)

‘192.168.2.14’

>>> int(a)

3232236046

>>>

Calculating with Key Functions
At some point, most Python programmers encounter a problem
where they need to sort some data. For example, suppose you had
some stock data:

stocks = [# (name, shares, price)

 (‘AA’, 100, 32.20),

 (‘IBM’, 50, 91.10),

 (‘CAT’, 150, 83.44),

 (‘MSFT’, 200, 51.23),

 (‘GE’, 95, 40.37),

 (‘MSFT’, 50, 65.10),

 (‘IBM’, 100, 70.44)

]

To sort the data, you can use the sorted() function; however, it
only sorts according to the first tuple field (the name), producing
this:

>>> sorted(stocks)

[(‘AA’, 100, 32.2), (‘CAT’, 150, 83.44), (‘GE’, 95, 40.37), (‘IBM’, 50,

91.1),

 (‘IBM’, 100, 70.44), (‘MSFT’, 50, 65.1), (‘MSFT’, 200, 51.23)]

>>>

To change the sort, you can supply an optional “key” to sorted()
like this:

>>> # sort by shares

>>> sorted(stocks, key=lambda s: s[1])

[(‘IBM’, 50, 91.1), (‘MSFT’, 50, 65.1), (‘GE’, 95, 40.37), (‘AA’, 100,

32.2),

(‘IBM’, 100, 70.44), (‘CAT’, 150, 83.44), (‘MSFT’, 200, 51.23)]

>>> # sort by price

>>> sorted(stocks, key=lambda s:s[2])

[(‘AA’, 100, 32.2), (‘GE’, 95, 40.37), (‘MSFT’, 200, 51.23), (‘MSFT’,

50, 65.1),

(‘IBM’, 100, 70.44), (‘CAT’, 150, 83.44), (‘IBM’, 50, 91.1)]

>>>

The key function is expected to take an element and return
a value that’s actually used to drive the sorting operation. In
this example, the function is picking out the value of a specific
column.

It’s not as widely known, but the special key function can be
given to a variety of other data-related functions. For example:

>>> # Find lowest price

>>> min(stocks, key=lambda s: s[2])

(‘AA’, 100, 32.2)

In return for being our “eyes and ears” on campus, representatives receive a complimentary membership in
USENIX with all membership benefits (except voting rights), and a free conference registration once a year
(after one full year of service as a campus rep).

To qualify as a campus representative, you must:

n	 Be full-time faculty or staff at a four year accredited university

n	 Have been a dues-paying member of USENIX for at least one full year in the past

For more information about our Student Programs, contact
Julie Miller, Marketing Communications Manager, julie@usenix.org

www.usenix.org/students

Professors, Campus Staff, and Students—
do you have a USENIX Representative on your campus?

If not, USENIX is interested in having one!
The USENIX Campus Rep Program is a network of representatives at campuses around the world who provide
Association information to students, and encourage student involvement in USENIX. This is a volunteer program,
for which USENIX is always looking for academics to participate. The program is designed for faculty who directly
interact with students. We fund one representative from a campus at a time. In return for service as a campus
representative, we offer a complimentary membership and other benefits.

A campus rep’s responsibilities include:

n	 �Maintaining a library (online and in print) of USENIX
publications at your university for student use

n	� Distributing calls for papers and upcoming event
brochures, and re-distributing informational emails
from USENIX

n	� Encouraging students to apply for travel grants to
conferences

n	� Providing students who wish to join USENIX with
information and applications

n	� Helping students to submit research papers to
relevant USENIX conferences

n	� Providing USENIX with feedback and suggestions
on how the organization can better serve students

38    A P R I L 20 13  VO L . 3 8 N O. 2 	 www.usenix.org

COLUMNS
Some Easily Overlooked But Useful Python Features

>>> # Find maximum number of shares

>>> max(stocks, key=lambda s: s[1])

(‘MSFT’, 200, 51.23)

>>> # Find 3 lowest prices

>>> import heapq

>>> heapq.nsmallest(3, stocks, key=lambda s:s[2])

[(‘AA’, 100, 32.2), (‘GE’, 95, 40.37), (‘MSFT’, 200, 51.23)]

>>>

Final Words
That’s about it for now. In the next issue, I’ll plan to give a recap
of highlights from the PyCon 2013 conference (held in March).

