
32    J U N E 20 14  VO L . 3 9, N O. 3 	 www.usenix.org

COLUMNSPractical Perl Tools
My Hero, Zero (Part 1)

D A V I D N . B L A N K - E D E L M A N

In the last column, I spent some time exploring MongoDB, a database
that challenges in some respects what it means to be a database. For this
column, I’d like to take a look at a message queuing system that does the

same for message queuing systems: ZeroMQ (written most often as 0MQ.
Even though I’m not that hip, I’ll use that representation most of the time
below).

If the term “message queuing system” makes you feel all stifle-a-yawn enterprise-y, boring
business service bus-ish, get-off-my-lawn-you-kids, we were doing that in the ’80s-like, then
I would recommend taking another look at how serious systems are getting built these days.
If you are like me, you will notice again and again places in which tools are adopting mes-
sage-bus architectures where you might not expect them. These architectures turn out to be
an excellent way to handle the new reality of distributed systems, such as those you might
find when you’ve launched into your favorite cloud provider. This is why message queuing
systems are at the heart of packages like MCollective and Sensu. They often allow you to
build loosely coupled and dynamic systems more easily than some traditional models.

Our friend Wikipedia talks about message queues as “software-engineering components
used for interprocess communication, or for inter-thread communication within the same
process…. Message queues provide an asynchronous communications protocol, meaning that
the sender and receiver of the message do not need to interact with the message queue at the
same time.” Message queuing systems like ActiveMQ and RabbitMQ let you set up message
broker servers so that clients can receive or exchange messages.

Now, back to the MongoDB comparison: Despite having MQ at the end of the name like
ActiveMQ and RabbitMQ, ZeroMQ is a very different animal from the other MQs. I don’t
think I can do a better job setting up how it is different than by quoting the beginning of the
official 0MQ Guide:

ØMQ (also known as ZeroMQ, 0MQ, or zmq) looks like an embeddable networking
library but acts like a concurrency framework. It gives you sockets that carry
atomic messages across various transports like in-process, inter-process, TCP, and
multicast. You can connect sockets N-to-N with patterns like fan-out, pub-sub,
task distribution, and request-reply. It’s fast enough to be the fabric for clustered
products. Its asynchronous I/O model gives you scalable multicore applications,
built as asynchronous message-processing tasks. It has a score of language APIs
and runs on most operating systems. ØMQ is from iMatix and is LGPLv3 open
source.

Let me emphasize a key part of the paragraph above. With 0MQ, you don’t set up a distinct
0MQ message broker server like you might with a traditional MQ system. There’s no zeromq
binary, there’s no /etc/init.d/zeromq, no /etc/zeromq for config files, no ZeroMQ Windows
service to launch (or whatever else you think about when bringing up a server). Instead, you
use the 0MQ libraries to add magic to your programs. This magic makes building your own
message-passing architecture (whether it’s hub and spoke, mesh, pipeline, etc.) a lot easier
than you might expect. It takes a lot of the pain out of writing clients, servers, peers, and so
on. I’ll show exactly what this means in a moment.

David N. Blank-Edelman is the
director of technology at the
Northeastern University College
of Computer and Information

Science and the author of the O’Reilly book
Automating System Administration with Perl (the
second edition of the Otter book), available
at purveyors of fine dead trees everywhere.
He has spent the past 24+ years as a system/
network administrator in large multi-platform
environments, including Brandeis University,
Cambridge Technology Group, and the MIT
Media Laboratory. He was the program chair
of the LISA ’05 conference and one of the LISA
’06 Invited Talks co-chairs. David is honored
to have been the recipient of the 2009 SAGE
Outstanding Achievement Award and to serve
on the USENIX Board of Directors beginning in
June of 2010. dnb@ccs.neu.edu

www.usenix.org	   J U N E 20 14  VO L . 3 9, N O. 3  33

COLUMNS
Practical Perl Tools

I want to note one more thing before actually diving into the
code. ZeroMQ looks really basic at first, probably because the
network socket model is pretty basic. But, like anyone who has
built something with a larger-than-usual construction set, such
as a ton of Tinkertoys, Legos, or maybe a huge erector set (if you
are as old as dirt), at a certain point you step back from a creation
that has somehow grown taller than you are and say “whoa.” I
know I had this experience reading the ZeroMQ book (disclo-
sure: published by O’Reilly, who also published my book). In this
book, which I highly recommend if ZeroMQ interests you at all, it
describes a ton of different patterns that are essentially building
blocks. At some point, you’ll have that “whoa” moment when you
realize that these building blocks offer everything you need to
construct the most elaborate or elegant architecture your heart
desires. Given the length of this column, I’ll only be able to look
at the simplest of topologies, but I hope you’ll get a hint of what’s
possible.

Socket to Me
Okay, that’s probably the single most painful heading I’ve writ-
ten for this column. Let’s pretend it didn’t happen.

Everything 0MQ-based starts with the basic network socket
model, so I’ll attempt a three-sentence review (at least the parts
that are relevant to 0MQ). Sockets are like phone calls (and
indeed the combination of an IP address and a port attempts to
provide a unique phone number). To receive a connection, you
create a socket and then bind to it to listen for connections (I’m
leaving out accept() and a whole Stevens book, but bear with me);
to make a connection, you connect() to a socket already set to
receive connections. Receiving data from an incoming connec-
tion is done via a recv()-like call; sending data to the other end is
performed with a send()-like call.

Those three sentences provide the key info you need to know to
get started with 0MQ socket programming. Like one of those
late-night commercials for medications, I feel I should tag on a
whole bunch of disclaimers, modifiers, and other small print left
out of the commercial, but I’m going to refrain except for these
two things:

◆◆ There are lots of nitty-gritty details to (good) socket program-
ming I’m not even going to touch. 0MQ handles a bunch of that
for you, but if you aren’t going to use 0MQ for some reason, be
sure to check out both the non-Perl references (e.g., the Stevens
books) and the Perl-related references (Lincoln Stein wrote a
great book called Network Programming with Perl many eons
ago).

◆◆ If you do want to do plain ol’ socket programming in Perl, you’ll
want to use one of the socket-related Perl modules to make
the job easier. Even though Socket.pm ships with Perl, I think
you’ll find IO::Socket more pleasant to use. With these modules,

you can open up a socket that connects to another host easily
and print() to it as if it were any other file handle. Again, this is
just a “by the way” sort of thing since we’re about to strap on a
rocket motor and use 0MQ sockets from Perl.

To get started with 0MQ in Perl, you’ll need to pick a Perl module
that provides an interface to the 0MQ libraries. At the moment,
there are two choices for modules worth considering, plus or
minus one: ZMQ::LibZMQ3 and ZMQ::FFI. The former is the
successor to what used to be called just ZeroMQ. The author
of that module decided to create modules specifically targeted
to specific major versions of the 0MQ libraries (v2 and v3). It
offers an API that is very close to the native library (as a quick
aside, the author also provides a ZMQ module which will call
ZMQ::LibZMQ3 or ZMQ::LibZMQ2, but the author suggests in
most cases to use the version-specific library directly, hence my
statement of “plus or minus one,” above). The ZMQ::FFI uses
libffi to provide a slightly more abstract interface to 0MQ that
isn’t as 0MQ-version specific. (In case you are curious about
FFI, its docs say, “FFI stands for Foreign Function Interface. A
foreign function interface is the popular name for the interface
that allows code written in one language to call code written in
another language.")

In this column, I’ll use ZMQ::LibZMQ3 because it allows me
to write code that looks like the C sample code provided in the
0MQ user guide (and in the 0MQ book). For the sample code in
this part of a two-part column, I’ll keep things dull and create a
simple echo client-server pair. The server will listen for incom-
ing connections and echo back any messages the connected
clients sent to it. First, I’ll look at the server code, because it’s
going to give me a whole bunch of things to talk about:

use ZMQ::LibZMQ3;

use ZMQ::Constants qw(ZMQ_REP);

my $ctxt = zmq_init;

my $socket = zmq_socket($ctxt, ZMQ_REP);

my $rv = zmq_bind($socket, "tcp://127.0.0.1:8888");

while (1) {

 my $msg = zmq_recvmsg($socket);

 print "Server received:" . zmq_msg_data($msg) . "\n";

 my $msg = zmq_msg_init_data(zmq_msg_data($msg));

 zmq_sendmsg($socket, $msg);

}

The first thing to note about this code is that loads both the 0MQ
library module and a separate constants module. Depending
on how you installed the library module, the constants mod-
ule likely was installed at the same time for you. This module
holds the definition for all of the constants and flags you’ll be
using with 0MQ. There are a bunch—you’ll see the first one in
just a couple of lines. The next line of code initializes the 0MQ

34    J U N E 20 14  VO L . 3 9, N O. 3 	 www.usenix.org

COLUMNS
Practical Perl Tools

environment, something you have to do before you use any other
0MQ calls. 0MQ contexts usually don’t have to come into play
except as a background thing unless you are doing some fairly
complex programming, so I’m not going to say more about them
here.

With all of that out of the way, it is time to create your first
socket. Sockets get created in a context and are of a specific type
(in this case ZMQ _REP, or just REP). Socket types are a very
important concept in 0MQ, so I’ll take a quick moment away
from the code to discuss them.

I don’t know the last time you played with Tinkertoys but you
might recall that they consisted of a few basic connector shapes
(square, circle, etc.), which accepted rods at specific angles. If
you wanted to build a cube, you had to use the connectors that
had holes at 90-degree angles and so on. With 0MQ, specific
socket types get used for creating certain sorts of architectures.
You can mix and match to a certain extent, but some combina-
tions are more frequently used or more functional than others.

For example, in the code I am describing, I will use REQ and
REP sockets (REQ for synchronously sending a REQuest, REP
for synchronously providing a REPly). You will see a similar
pair in an example in the next issue. You might be curious what
the difference is between a REQ and REP socket because as Dr.
Seuss might say, “a socket’s a socket, no matter how small.” The
short answer is the different socket types do slightly different
things around message handling (e.g., how message frames are
constructed, etc.). See the 0MQ book for more details.

Now that you have a socket constructed, you can tell it to listen
for connections, which is done by performing a zmq_bind().
Here you can see that I have asked to listen to unicast TCP/IP
connections on port 8888 of the local host. 0MQ also knows how
to handle multicast, inter-process, and inter-thread connec-
tions. At this point, you are ready to go into a loop that will listen
for messages. The zmq_recvmsg() blocks until it receives an
incoming message. It returns a message object, the contents of
which are displayed using zmq_msg_data($msg). To reply to the
message you just received, you construct a message object with
the contents of the message you received and send it back over
the socket via zmq_sendmsg($socket, $msg). That’s all you need
to construct a simple server; now, I’ll look at the client code:

use ZMQ::LibZMQ3;

use ZMQ::Constants qw(ZMQ_REQ);

my $ctxt = zmq_init;

my $socket = zmq_socket($ctxt, ZMQ_REQ);

zmq_connect($socket, "tcp://127.0.0.1:8888");

my $counter = 1;

print "I am $$\n";

while (1) {

 my $msg = zmq_msg_init_data("$counter:$$");

 zmq_sendmsg($socket, $msg);

 print "Client sent message " . $counter++ . "\n";

 my $msg = zmq_recvmsg($socket);

 print "Client received ack:" . zmq_msg_data($msg) . "\n";

 sleep 1;

}

The client code starts out almost identically (note: I said almost,
the socket type is different. I once spent a very frustrating hour
trying to debug a 0MQ program because I had written ZMQ _
REP instead of ZMQ _REQ in one place in the code). It starts to
diverge from the server code because, instead of listening for a
connection, it is set to initiate one by using zmq_connect(). In
the loop, you construct a simple message (the message number
plus the PID of the script that is running) and send it on the
socket. Once you’ve sent the message, you wait for a response
back from the server using the same exact code the server used
to receive a message. REQ-REP sockets are engineered with
the expectation that a request is made and a reply is returned, so
you really do want to send a reply back. Finally, I should men-
tion there is a sleep statement at the end of this loop just to keep
things from scrolling by too quickly (0MQ is FAST), but you can
feel free to take it out.

Let’s take the code for a spin. If you start up the server, it sits and
waits for connections:

$./zmqserv1.pl

In a separate window, start the client:

Immediately, the client prints something like:

I am 86989

Client sent message 1

Client received ack:1:86989

Client sent message 2

Client received ack:2:86989

Client sent message 3

Client received ack:3:86989

…

and the server also shows this:

Server received:1:86989

Server received:2:86989

Server received:3:86989

…

Now, you can begin to see what all of the fuss is about with 0MQ.
First, if you stop the server and then start it again (while leaving
the client running):

www.usenix.org	   J U N E 20 14  VO L . 3 9, N O. 3  35

COLUMNS
Practical Perl Tools

$./zmqserv1.pl

Server received:1:87110

Server received:2:87110

Server received:3:87110

^C

$./zmqserv1.pl

Server received:4:87110

Server received:5:87110

Server received:6:87110

Server received:7:87110

^C

$./zmqserv1.pl

Server received:8:87110

Server received:9:87110

Server received:10:87110

^C

During all of this, the client just said:

$./zmqcli1.pl

I am 87110 Client sent message 1

Client received ack:1:87110

Client sent message 2

Client received ack:2:87110

Client sent message 3

Client received ack:3:87110

Client sent message 4

Client received ack:4:87110

Client sent message 5

Client received ack:5:87110

Client sent message 6

Client received ack:6:87110

Client sent message 7

Client received ack:7:87110

Client sent message 8

Client received ack:8:87110

Client sent message 9

Client received ack:9:87110

Client sent message 10

Client received ack:10:87110

Here you are seeing 0MQ’s sockets auto-reconnect (and do a
little bit of buffering). This isn’t the only magic going on behind
the scenes, but it is the easiest to demonstrate.

Now, I’ll make the topology a little more interesting. Suppose you
want to have a single server with multiple clients connected to
it at the same time. Here’s the change you’d have to make to the
server code:

(nada)

And the change to the client code:

(also nada)

All you have to do is start the server and spin up as many copies
of the client as you desire. Let’s start up five clients at once:

$ for ((i=0;i<5;i++)); do ./zmqcli1.pl & done

On the client side, you see a mishmash of the outputs from the
client (that eventually return to lockstep):

I am 87242

I am 87241

Client sent message 1 I am 87239

Client sent message 1 I am 87243

Client sent message 1

Client received ack:1:87241

I am 87240

Client received ack:1:87243

Client sent message 1 Client sent message 1

Client received ack:1:87239

Client received ack:1:87242

Client received ack:1:87240

Client sent message 2

Client sent message 2

Client sent message 2

Client sent message 2

Client sent message 2

Client received ack:2:87239

Client received ack:2:87241

Client received ack:2:87243

Client received ack:2:87240

Client received ack:2:87242

Client sent message 3

Client sent message 3

Client sent message 3

Client sent message 3

Client sent message 3

Client received ack:3:87241

Client received ack:3:87239

Client received ack:3:87240

Client received ack:3:87243

Client received ack:3:87242

On the server side, the output is a little more orderly:

$./zmqserv1.pl

Server received:1:87241

Server received:1:87239

Server received:1:87243

Server received:1:87242

Server received:1:87240

Server received:2:87239

Server received:2:87241

Server received:2:87243

Server received:2:87242

Server received:2:87240

36    J U N E 20 14  VO L . 3 9, N O. 3 	 www.usenix.org

COLUMNS
Practical Perl Tools

Server received:3:87241

Server received:3:87239

Server received:3:87240

Server received:3:87243

Server received:3:87242

It is pretty cool that the server was able to handle multiple simul-
taneous connections without any code changes, but one thing
that may not be clear is that 0MQ is not only handling these con-
nections, it’s also automatically load-balancing between them as
well. That’s the sort of behind-the-scenes magic I think is really
awesome.

I believe it is always good to end a show after a good magic trick,
so I’ll wind up part 1 of this column right here. Join me next time
when I will look at other ZeroMQ socket types and build some
even cooler network topologies.

Take care, and I’ll see you next time.

Do you have a USENIX Representative on your
university or college campus?
If not, USENIX is interested in having one!
The USENIX Campus Rep Program is a network of representatives at campuses around the world who provide Association information to
students, and encourage student involvement in USENIX. This is a volunteer program, for which USENIX is always looking for academics to
participate. The program is designed for faculty who directly interact with students. We fund one representative from a campus at a time.
In return for service as a campus representative, we offer a complimentary membership and other benefits.

A campus rep’s responsibilities include:

■ Maintaining a library (online and in print) of USENIX publications
at your university for student use

■ Distributing calls for papers and upcoming event brochures, and
re-distributing informational emails from USENIX

■ Encouraging students to apply for travel grants to conferences

In return for being our “eyes and ears” on campus, the Campus Representative receives access to the members-only areas of the USENIX
Web site, free conference registration once a year (after one full year of service as a Campus Representative), and electronic conference
proceedings for downloading onto your campus server so that all students, staff, and faculty have access.

www.usenix.org/students

■ Providing students who wish to join USENIX with information
and applications

■ Helping students to submit research papers to relevant
USENIX conferences

■ Providing USENIX with feedback and suggestions
on how the organization can better serve students

To qualify as a campus representative, you must:

■ Be full-time faculty or staff at a four year accredited university ■ Have been a dues-paying member of USENIX for at least one
full year in the past

For more information about our Student Programs, contact
Julie Miller, Marketing Communications Manager, julie@usenix.org

14
11th USENIX Symposium
on Operating Systems Design
and Implementation

October 6–8, 2014
Broomfield, CO

Join us in Broomfi eld, CO, October 6–8, 2014, for the 11th USENIX Symposium on Operating

Systems Design and Implementation (OSDI ‘14). The Symposium brings together professionals

from academic and industrial backgrounds in what has become a premier forum for discussing

the design, implementation, and implications of systems software.

Don’t miss the co-located workshops on Sunday, October 5

Diversity ’14: 2014 Workshop on Supporting
Diversity in Systems Research

HotDep ’14: 10th Workshop on Hot Topics
in Dependable Systems

HotPower ’14: 6th Workshop on Power-
Aware Computing and Systems

INFLOW ’14: 2nd Workshop on Interactions
of NVM/Flash with Operating Systems and
Workloads

TRIOS ’14: 2014 Conference on Timely
 Results in Operating Systems

SAVE THE DATE!

www.usenix.org/osdi14

All events will take place at the Omni Interlocken Resort

