
40    J U N E 20 13  VO L . 3 8 N O. 3 	 www.usenix.org

HARDWAREProgramming Models for Emerging
Non-Volatile Memory Technologies
A N D Y R U D O F F

Andy Rudoff is an Enterprise
Storage Architect at Intel.
He has more than 25 years
of experience in operating
systems internals, file systems,

and networking. Andy is co-author of the
popular UNIX Network Programming book.
More recently, he has focused on programming
models and algorithms for Non-Volatile
Memory usage. andy.rudoff@intel.com

Upcoming advances in Non-Volatile Memory (NVM) technologies
will blur the line between storage and memory, creating a disruptive
change to the way software is written. Just as NAND (Flash) has led

to the addition of new operations such as TRIM, next generation NVM will
support load/store operations and require new APIs. In this article, I describe
some of the issues related to NVM programming, how they are currently
being resolved, and how you can learn more about the emerging interfaces.

The needs of these emerging technologies will outgrow the traditional UNIX storage soft-
ware stack. Instead of basic read/write interfaces to block storage devices, NVM devices
will offer more advanced operations to software components higher up in the stack.
Instead of applications issuing reads and writes on files, converted into block I/O on SCSI
devices, applications will turn to new programming models offering direct access to per-
sistent memory (PM). The resulting programming models allow applications to leverage
the benefits of technological advances in NVM.

The immediate success of these advances and next generation NVM technologies will rely
on the availability of useful and familiar interfaces for application software as well as kernel
components. Such interfaces are most successful when key operating system vendors and
software vendors agree on an approach, terminology, and a strategy for widespread adoption.
I will describe some of the more interesting changes on the horizon for NVM programming
and outline new solutions to address these changes. Finally, I’ll explain how the industry is
driving commonality for these interfaces using a Technical Work Group (TWG) recently
formed by the Storage Networking Industry Association (SNIA).

NVM Programming Models
Although there are surely countless possible programming models for using NVM, I’ll
focus on the four most relevant models. The first two represent the most common stor-
age interfaces in use for many decades, which I will call NVM Block Mode and NVM File
Mode. The remaining two models, which I will call PM Volume Mode and PM File Mode,
specifically target the emergence of persistent memory.

NVM Block Mode
The diagram in Figure 1 represents a portion of a common software stack, where the dashed
red line represents the interface providing the NVM Block Mode programming model.

There are many variations on the exact details of the software stack both above and below
the dashed red line in Figure 1. The point of the diagram is to illustrate how the interface
works, not to focus on a specific set of software components using it. As shown, the NVM
Block Mode programming model provides the traditional block read/write interface to ker-
nel modules such as file systems and, in some cases, to applications wanting to use the block
device directly (for example, by opening /dev/sda1 on a Linux system).

Why is this decades-old interface interesting for a discussion of NVM Programming?
Advances in NVM technology make it interesting by motivating change to an interface that

www.usenix.org	   J U N E 20 13  VO L . 3 8 N O. 3  41

HARDWARE
Programming Models for Emerging Non-Volatile Memory Technologies

has otherwise barely changed in many years. A fairly recent but
widely adopted example is the addition of software support for
the TRIM command on the modern solid state drive (SSD). The
TRIM command allows file systems to inform an SSD which
blocks of data are no longer in use. Although useful for virtual
arrays that support thin provisioning, this information was not
necessary at the basic drive level until the emergence of Flash
drives, where the wear-leveling management required by the
drive can benefit from it [1].

Just as the simple block read/write interface to the driver
required extensions to support TRIM, other emerging NVM
features, such as support for atomic operations, will require
similar broadening of the interfaces [2]. Additionally, simply
exposing certain attributes of an NVM device to applications
may prove just as useful. Applications can optimize I/O for
performance using information on optimal I/O sizes, sup-
ported granularity of I/O, and attributes such as powerfail
write atomicity. By arriving at common definitions for these
extended operations and attributes, the NVM industry can pro-
vide a more effective ecosystem for software writers to develop
NVM-aware applications that better leverage NVM features
across multiple system types. Exactly how this ecosystem is
created is covered later in this article.

NVM File Mode
Figure 2 illustrates the NVM File Mode programming model.
Again, the red dashed line depicts the interface of interest, and
the rest of the diagram is simply one possible layout of software
components to show how the interface is used.

In this mode, a common file system such as ext4 on Linux uses
a block-capable driver in the usual fashion. As with NVM Block
Mode, this long-standing programming model will gain some
incremental additions to the standard file API to allow applica-
tions to take advantage of advances in NVM.

For an example of how the NVM File Mode can evolve to benefit
applications, consider the double write technique used by the
MySQL database. This technique is used to protect database
tables from corruption due to system interruption, such as a
power failure. These tables are typically stored in files, and the
double write technique is used to protect MySQL from partial
page writes, that is, the write of a page of data that is torn by a
system interruption. If the MySQL application were able to dis-
cover that writes of up to a certain size (the database page size)
are guaranteed untearable by a system interruption, the double
writes could be avoided [3]. Providing an interface for applica-
tions to request the powerfail write atomicity of the underly-
ing NVM allows applications like MySQL to discover these
attributes automatically and modify their behavior accordingly.
Without this interface system, administrators must determine
obscure attributes of the storage stack and edit MySQL configu-
ration files to inform the application of these attributes.

PM Volume Mode
In Figure 3, the block diagram looks similar to NVM Block
Mode, but here the device is not just NVM, but PM-Capable
NVM. To be PM-capable means the NVM is usable directly via
the processor load and store instructions. Although one might
argue that any storage element might be connected to the system
in a way the processor can load directly from it, the practicality
of stalling a CPU while waiting for a load from technology such
as NAND Flash prevents such a direct connection. But more
advanced NVM technology, as well as innovative caching tech-
niques, is allowing a generation of PM devices to emerge.

PM Volume Mode, as shown in the diagram, allows a kernel com-
ponent to gain access to the persistence directly. The diagram
shows a PM-Aware Kernel Module communicating with the
NVM driver. This interface allows the kernel module to fetch
the physical address ranges where the PM is accessed. Once the

Figure 1: The NVM Block Mode interface, depicted by the red dashed line Figure 2: The NVM File Mode interface, providing the usual file operations
enhanced with additional NVM operations

42    J U N E 20 13  VO L . 3 8 N O. 3 	 www.usenix.org

HARDWARE
Programming Models for Emerging Non-Volatile Memory Technologies

Why a file system? Why does this programming model center
around the file APIs? This will be explained in the next section
where I focus on persistent memory.

Persistent Memory
Now that all four NVM programming models have been
described, I’ll turn to the details of persistent memory. PM
deserves special attention because, unlike the incremental
improvements occurring with the NVM Block and NVM File
modes, PM offers a much more disruptive change. Just as the
ecosystem reacted to the change from faster clock rates on single
CPUs to higher core counts (forcing performance-sensitive
applications to revise their algorithms to be multithreaded),
PM will cause the ecosystem to rethink how data structures are
stored persistently. PM offers a combination of persistence and
the ability to access the data structures without first performing
block I/O and then converting the blocks of data into memory-
based structures. As with any new technology, the benefits of
PM come with a set of new and interesting challenges.

Allocation of Persistent Memory
Every C programmer is familiar with the standard malloc inter-
face for dynamically allocating memory:

ptr = malloc(len);

Given a length in bytes, an area of RAM is returned to the
calling process. This well-worn interface is simple and easy to
use, although one could argue it is also easy to misuse, causing
hours of debugging memory leak and memory corruption issues.
But with so many decades of use and millions of lines of C code
depending on malloc, a natural way to expose PM seems to be
simply adding another version of malloc:

ptr = pm_malloc(len); /* the naïve solution */

kernel has that information, it need not ever call back into the
NVM driver, instead accessing the PM directly as shown by the
blue arrow in the diagram connecting the PM-Aware Kernel
Module directly with the persistence in the NVM device. This
fairly raw access to the PM allows the kernel module to add its
own structure to the ranges of persistence and use it however
it chooses. Examples include using the PM as a powerfail-safe
RAID cache, a persistent swap space, or, as we’ll discuss next, a
PM- Aware File System.

A product providing PM may also provide NVM Block Mode,
or any of the other modes; these programming models are not
mutually exclusive, I am simply describing them separately
because they are independent of each other.

PM File Mode
Our fourth NVM programming model is shown in Figure 4. PM
File Mode is similar to the NVM File Mode we described ear-
lier, but in this case the file system is specifically a PM-Aware
File System.

Notice the interfaces associated with this programming model
(the red dashed line again). The PM-Aware File System typi-
cally provides all the same file APIs as a traditional file system.
In fact, a PM-Aware File System is likely created by enhancing
an existing file system to be PM-aware. The key difference is
in what happens when an application memory maps a file. As
shown by the far right blue arrow in the diagram, memory map-
ping a file allows the application direct load/store access to the
PM. Once the mapping is set up, accesses to the PM bypass any
kernel code entirely since the MMU mappings allow the applica-
tion physical access. This diverges from a traditional file system
where memory mapped files are paged in and out of a page cache.

Figure 3: The PM Volume Mode interface, allowing a PM-Aware Kernel
Module to look up the physical addresses in the volume

Figure 4: The PM File Mode interface, depicted by the red dashed line,
providing the standard file operations but with memory mapped files
going directly to NVM

www.usenix.org	   J U N E 20 13  VO L . 3 8 N O. 3  43

HARDWARE
Programming Models for Emerging Non-Volatile Memory Technologies

This simple solution gives the application programmer a choice
between allocating RAM (using malloc) and PM (using pm_mal-
loc), which seems like a fine solution on the surface but quickly
falls short on further examination. Presumably the application
was allocating PM in order to store something in it persistently,
since that’s the whole point. So the application will need a way to
get back to that range of PM each time it is run, as well as each
time the system is rebooted or power cycled. To allow this, the
PM must be given a name that the application can provide to
reconnect with it.

Many naming schemes for PM are possible, from some sort
of numeric object ID to URL-like strings. But once the PM is
named, the next issue immediately comes up: How to deter-
mine if an application has permission to connect to an area of
PM? Like naming, many permission schemes are possible, but
as you delve into the management of PM, you start to find even
more issues, such as how does the system administrator change
the permissions on PM? How are old areas of PM removed or
renamed? Even more importantly, how are areas of PM backed
up to protect against hardware failure? For traditional storage,
the file system semantics provide answers to all these questions,
so even though PM is much more like system memory, exposing
it like files provides a convenient solution. The file API provides
a natural namespace for PM ranges—ways to create, delete,
resize, rename the ranges—and many off-the-shelf backup tools
will simply work. The net effect of this approach is that if an
application wants volatile memory, it calls malloc, and if it wants
PM, it opens (or creates) a file on a PM-Aware File System and
uses the mmap API to map it into its address space.

Making Changes to Persistent Memory Durable
With volatile memory, there’s no need to worry about the
durability of stores because all memory-resident information is
assumed lost when the application or system shuts down. But
with storage, that data stored is often cached and must be com-
mitted to durable media using some sort of synchronization
API. For memory mapped files, that API is msync [4]. Although
a strict interpretation of the traditional msync call is that it
f lushes pages of data from a page cache, with PM the applica-
tion has direct load/store access without involving the page
cache. The msync call for PM is instead tasked with f lushing
the processor caches, or any other intermediate steps required
to make sure the changes are committed to the point of being
powerfail safe.

Position-Independent Data Structures
With PM available to applications, for those applications to store
data structures such as arrays, trees, heaps, etc. is convenient.
On start-up, the application can use the file APIs described
above to memory map PM and immediately access those data

structures; however, there’s an issue around position-indepen-
dence of the data structures as shown in Figure 5.

On the left side of the diagram, the typical address space
layout of a process on a UNIX system is shown. Because PM is
accessed as memory mapped files, it gets mapped into the area
with the other memory mapped files, such as shared libraries
(growing downwards). The striped areas on many systems are
the spaces between ranges, such as stack and memory mapped
files, and the exact sizes of the striped areas are often ran-
dom. This is a security feature designed to make some types
of attacks more difficult [5]. For data structures stored in PM,
the result is that any pointers, like the one depicted on the right
side of the diagram, will be invalid between any two runs of
the application. Of course, this isn’t a new problem; storing
absolute pointers in a memory mapped file has always been
problematic, but the emergence of PM means this is expected to
be a much more common problem to solve.

The obvious solution, to only store relative pointers in PM,
can be somewhat error prone. Every pointer dereference must
account for the fact that the pointer is relative and add in some
sort of base offset. Higher-level languages with runtime virtual
machines, such as Java, or languages without explicit pointers,
may be able to handle this transparently, which is an area of
research, but the first goal is to expose PM in the basic low-level
system call and C environment. One potential answer is the
idea of based pointers, a feature available in some C compilers,
such as Microsoft’s C++ compiler [6]. With this feature, a new
keyword, __based, is added to the language so that declarations
such as this linked list example are possible:

Figure 5: Typical process address space layout, with slightly different
positions each run due to the randomly sized areas

44    J U N E 20 13  VO L . 3 8 N O. 3 	 www.usenix.org

HARDWARE
Programming Models for Emerging Non-Volatile Memory Technologies

void *myPM;

struct element {

 …

 struct element __based (myPM) *next;

}

The result is that when the PM file is memory mapped, the
location of the PM area is stored in the pointer myPM, and due to
the __based declaration, every time the next field is derefer-
enced, the compiler generates code to adjust it by the value of
myPM, creating a convenient position-independent pointer for
the programmer.

So far I’ve described only one of the many issues around posi-
tion-independent data structures and the storing of data struc-
tures in PM. Fortunately, there is quite a bit of research going on
in academia on this topic, and two bodies of work demand spe-
cial mention here. The NV-Heaps work [7] and the Mnemosyne
project [8] both attack the issue described here in different and
innovative ways. These works also look into language extensions
and other runtime solutions to these problems and are recom-
mended reading for anyone interested in PM.

Error Handling
The main memory of a computer system is typically protected
against errors by mechanisms such as error correcting codes
(ECC). When that memory is used by applications, such as
memory allocated by calling malloc, applications do not typically
deal with the error handling. Correctable errors are silently cor-
rected—silently as far as the application is concerned (the errors
are often logged for the administrator). Uncorrectable errors in
which application memory contents are corrupted may be fixed
by the OS if possible (for example, by re-reading the data from
disk if the memory contents were not modified), but ultimately
there are always cases in which the program state is known to be
corrupted and it is not safe to allow the program to continue to
run. On most UNIX systems, the affected applications are killed
in such cases, the UNIX signal SIGBUS most often being used.

Error handling for PM starts off looking like memory error
handling. Using Linux running on the Intel architecture as an
example, memory errors are reported using Intel’s Machine
Check Architecture (MCA) [9]. When the OS enables this fea-
ture, the error flow on an uncorrectable error is shown by the
solid red arrow in Figure 6, which depicts the mcheck module
getting notified when the bad location in PM is accessed.

As mentioned above, sending the application a SIGBUS allows
the application to decide what to do; however, in this case,
remember that the PM-Aware File System manages the PM
and that the location being accessed is part of a file on that file
system. So even if the application gets a signal preventing it from

using corrupted data, a method for recovering from this situation
must be provided. A system administrator may try to back up the
rest of the data in the file system before replacing the faulty PM,
but with the error mechanism we’ve described so far, the backup
application would be sent a SIGBUS every time it touched the
bad location. In this case, the PM-Aware File System needs a
way to be notified of the error so that it can isolate the affected
PM locations and then continue to provide access to the rest
of the PM file system. The dashed arrows in Figure 6 show the
necessary modification to the machine check code in Linux. On
start-up, the PM-Aware File System registers with the machine
code to show it has responsibility for certain ranges of PM. Later,
when the error occurs, the PM-Aware File System gets called
back by the mcheck module and has a chance to handle the error.

Here I’ve provided an abbreviated version of the error-handling
story for PM. This is still a developing area and I expect the
error-handling primitives to continue to evolve.

Creating an Ecosystem
The rapid success of PM and other emerging NVM technologies
depends on creating an effective ecosystem around new capabili-
ties as they become available. If each operating system vendor
and hardware vendor creates its own divergent API for using
these features, the ability of software vendors, kernel program-
mers, and researchers to exploit these features becomes limited.
To avoid this, a group of industry leaders has worked with SNIA
to create the NVM Programming Technical Work Group. Here is
how the TWG describes itself:

The NVM Programming TWG was created for the purpose of
accelerating availability of software enabling NVM (Non-Volatile
Memory) hardware. The TWG creates specifications, which pro-
vide guidance to operating system, device driver, and application
developers. These specifications are vendor agnostic and support
all the NVM technologies of member companies. [10]

Figure 6: The machine check error flow in Linux with some proposed new
interfaces depicted by dashed arrows

www.usenix.org	   J U N E 20 13  VO L . 3 8 N O. 3  45

HARDWARE
Programming Models for Emerging Non-Volatile Memory Technologies

The TWG is currently working on a specification describing the
four NVM programming models I covered in this article. The
specification will cover the common terminology and concepts
of NVM, including PM, and it will describe the semantics of the
new actions and attributes exposed by emerging NVM tech-
nology. But the TWG intentionally stops short of defining the
APIs themselves. This approach of providing the semantics but
not the syntax is done to allow the operating systems vendors
to produce APIs that make the most sense for their environ-
ments. The TWG membership includes several operating system
vendors that are actively participating in the definition of the
programming models. In fact, in the few months that the TWG
has existed, a remarkable number of companies have joined. As
of this writing, the membership list is: Calypso Systems, Cisco,
Dell, EMC, FalconStor, Fujitsu, Fusion-io, Hewlett-Packard,
Hitachi, Huawei, IBM, Inphi, Integrated Device Technology,
Intel, LSI, Marvell, Micron, Microsoft, NetApp, Oracle, PMC-
Sierra, QLogic, Samsung, SanDisk, Seagate, Symantec, Tata
Consultancy Services, Toshiba, Virident, and VMware. (This
list illustrates the scale of the collaboration and will surely be
out-of-date by the time this article is published.)

Summary
A software engineer will see countless incremental improve-
ments in hardware performance, storage capacity, etc. through a
long career. That same career will witness high impact, game-
changing developments only a few times. The transition of NVM
from something that looks like storage into something that
looks more like memory is one such disruptive event. By pulling
the industry together to define common ground, we can enable
software to rapidly and fully exploit these new technologies. The
SNIA NVM Programming Technical Work Group is our effort to
make this happen, and it has gained considerable industry trac-
tion in just a few months.

References
[1] Intel, Intel High Performance Solid-State Drive—Advan-
tages of TRIM: http://www.intel.com/support/ssdc/hpssd/
sb/CS-031846.htm.

[2] X. Ouyang, D. Nellans, R. Wipfel, D. Flynn, D.K. Panda,
“Beyond Block I/O: Rethinking Traditional Storage Primi-
tives,” 17th IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA-17), February 2011,
San Antonio, Texas.

[3] Peter Zaitsev, “Innodb Double Write,” MySQL Perfor-
mance Blog (Percona): http://www.mysqlperformanceblog
.com/2006/08/04/innodb-double-write/.

[4] The Open Group Base Specifications Issue 6, IEEE Std
1003.1, 2004 edition—msync: http://pubs.opengroup.org/
onlinepubs/009695399/functions/msync.html.

[5] Shacham et al., “On the Effectiveness of Address-Space
Randomization,” Proceedings of the 11th ACM Conference
on Computer and Communications Security, 2004,
pp. 298-307.

[6] Microsoft Developer Network, Based Pointers (C++):
http://msdn.microsoft.com/en-us/library/57a97k4e(v=vs.80)
.aspx.

[7] J. Coburn et al., “NV-Heaps: Making Persistent Objects
Fast and Safe with Next-Generation, Non-Volatile Memo-
ries,” The 16th ACM Conference on Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS ’11), March 2011, Newport Beach, California.

[8] Haris Volos, Andres Jaan Tack, Michael M. Swift,
“Mnemosyne: Lightweight Persistent Memory,” The 16th
ACM Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’11), March
2011, Newport Beach, California.

[9] Intel, Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3B, Chapter 15, March 2013: http://
download.intel.com/products/processor/manual/325462
.pdf.

[10] Storage Networking Industry Association, Technical
Work Groups: http://www.snia.org/tech_activities/work/
twgs.

