
www.usenix.org	   F eb rua ry 20 14  Vo l . 3 9, N o. 1  35

Using a Database to Store Data Captured
with tcpdump
M i h a l i s T s o u k a l o s

Mihalis Tsoukalos is a UNIX
system administrator who also
knows programming, databases,
and mathematics. Follow
Mihalis on Twitter: @mactsouk

www.mtsoukalos.eu

In this article, I show you how to store network data in a MySQL database
and how to take advantage of the SQL language to query stored data. I
know that this has been done before, but I thought that it would be a good

exercise to create my own solution.

Although I selected the MySQL [1] DBMS, you can use PostgreSQL, Oracle, or even a
NoSQL database such as MongoDB [2]. For the network data capturing, I will use the trusty
tcpdump [3] utility.

Advantages
Storing your network data into a database has many advantages, including the ability to query
your data offline, being quicker than pure disk I/O because databases store their data opti-
mized, embedding intelligence in your data by using a database, distributing your network
data in many databases, using the reporting tools that support your database, easily query-
ing your network data if you already know SQL, and giving a remote user access to your data
using network access to the database.

Storing your network data in a database has some disadvantages, as well, including the fact
that if you have a busy network, the database storage you will need will be big. Also, you will
need a person to administer the database, if you do not already have one.

The Solution
Before being able to use any network data, you must first collect network data using the
tcpdump utility. You can also use WireShark [4] or tshark [5] to capture network data, but
tcpdump is more popular for network capture.

A Perl script will be used for selecting and inserting the data into the MySQL database. The
DBI and DBD::mysql Perl modules must be pre-installed on your UNIX system for the Perl
script to work. The script also uses the Data::Validate::IP Perl module for catching erroneous
IP addresses.

The Perl script implies that the network data is already captured with tcpdump. If you want to tell
tcpdump to capture 2000 network packets and exit, the following command will do the trick:

tcpdump -i eth0 -c 2000 -w login.tcpdump

tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture

 size 65535 bytes

2000 packets captured

2004 packets received by filter

0 packets dropped by kernel

You can alter the captured packets by adding more command-line arguments to the tcpdump
command. Please note that you usually need root privileges to capture network traffic from a
network interface.

36    F eb rua ry 20 14  Vo l . 3 9, N o. 1 	 www.usenix.org

SYSADMIN
Using a Database to Store Data Captured with tcpdump

The Perl script uses the following tshark [9] command to convert the network data into a more readable format:

$	tshark -r login.tcpdump -T fields -e frame.number -e

	 frame.time_relative -e ip.src -e ip.dst -e

	 frame.protocols -e frame.len -E header=y -E quote=n

	 -E occurrence=f

The format of the exported text file will look like the following:

frame.number	 frame.time_relative	 ip.src	 ip.dst	 frame.protocols	 frame.len

1	 0.000000000	 109.74.193.253	 2.86.13.236	 eth:ip:tcp:ssh	 194

2	 0.011654000	 174.138.175.116	 109.74.193.253	 eth:ip:udp:dns	 97

3	 0.011733000	 109.74.193.253	 174.138.175.116	 eth:ip:icmp:ip:udp:dns	 125

4	 0.048020000	 208.67.217.17	 109.74.193.253	 eth:ip:udp:dns	 106

5	 0.048107000	 109.74.193.253	 208.67.217.17	 eth:ip:icmp:ip:udp:dns	 134

6	 0.055475000	 2.86.13.236	 109.74.193.253	 eth:ip:tcp	 66

7	 0.081615000	 83.145.248.129	 109.74.193.253	 eth:ip:udp:dns	 75

8	 0.081692000	 109.74.193.253	 83.145.248.129	 eth:ip:icmp:ip:udp:dns	 103

As the frame.protocols column may contain many values, we will use the last one.

The Implementation
The table that holds the network data contains a field called “id” that auto increments and acts as the primary
key for the table. The “packetNumber” field is the packet index for a given network traffic capture, whereas
the “dt” field is the time that the packet appeared since the first packet of the given network capture. The
“sourceIP” and “destIP” fields contain the source and destination IP values, respectively. The “protocol” fields
holds the protocol name of the network packet. Last, the “length” field holds the packet size in bytes.

You can choose to include additional fields depending on your network and the problem(s) you want to examine.

Importing the data into the MySQL data is also performed by the Perl script. If you have a fast computer and a
network without extremely high traffic, you can even store your network data in (near) real-time.

The Perl script is called netData.pl and takes a single argument that is the name of the file that holds the
tcpdump network data.

Querying the Database
The Perl script executes all the following queries and displays their results.

Find the Connections per Protocol:

mysql> select count(protocol), protocol FROM NetData GROUP BY protocol;
+---------------------+------------+
|	 count(protocol)	 |	 protocol	 |
+---------------------+------------+
1084	DNS
794	ICMP
1	ICMPv6
1	SSH
70	SSHv2
50	TCP
+---------------------+------------+
6 rows in set (0.04 sec)

www.usenix.org	   F eb rua ry 20 14  Vo l . 3 9, N o. 1  37

SYSADMIN
Using a Database to Store Data Captured with tcpdump

count(distinct(destIP))
278

TOTAL	 SourceIP
1682	 109.74.193.253
152	 2.86.13.236
76	 204.74.106.104
50	 175.41.186.83
48	 89.149.6.76
44	 90.155.53.34
40	 218.248.241.3
40	 114.134.15.205
38	 200.29.243.21
34	 14.139.5.22

Number of rows inserted: 999

If you connect to MySQL using the command line shell or a
GUI application, you can execute whatever SQL query you
wish. Only your imagination and SQL can limit the way you
can utilize the data.

If you are using a NoSQL database, such as MongoDB, which is
my favorite NoSQL database, you may need to learn how to use
the MapReduce [6] technique to query the database. The results
will be the same, but the implementation will be a little different.
MongoDB is more focused on storing semi-structured data.

In conclusion, determining your own requirements and creat-
ing the queries that fit your needs is the first thing to do before
inserting any data in a database. A statistical package such as
R [7, 8] can also be used for visualizing and exploring your data.
Download the netData.pl script from the USENIX site [10].

References
[1] MySQL site: http://www.mysql.com/.

[2] Kristina Chodorow, MongoDB: The Definitive Guide,
2nd Edition (O’Reilly Media, 2013).

[3] tcpdump: http://www.tcpdump.org.

[4] WireShark: http://www.wireshark.org/.

[5] tshark: http://www.wireshark.org/docs/man-pages/
tshark.html.

[6] MapReduce: http://docs.mongodb.org/manual/reference/
method/db.collection.mapReduce/.

[7] R Project: http://www.r-project.org.

[8] Mihalis Tsoukalos, “Using the R Advanced Statistical
Package,” Linux Journal, August 2013.

[9] Using WireShark Command Line Tools & Scripting:
http://www.youtube.com/watch?v=CWOCqGmu1aI.

[10] netData.pl: https://www.usenix.org/publications/login/
february-2014-volume-39-number-1

Find the average packet length per protocol. Also print the num-
ber of packets:

mysql> select COUNT(*), protocol, avg(length) from NetData
GROUP BY protocol;
+-----------+-------------+---------------+
|	COUNT(*)	 |	 PROTOCOL	|	 avg(length)	|
+-----------+-------------+---------------+
1084	DNS	95.8127
794	ICMP	123.0743
1	ICMPv6	118.0000
1	SSH	194.0000
70	SSHv2	356.3571
50	TCP	66.6400
+-----------+-------------+---------------+

6 rows in set (0.04 sec)

Find the number of different Destination Hosts used in the
destIP column:

mysql> select count(distinct(destIP)) from NetData;
+---------------------------+
|	count(distinct(destIP))	|
+---------------------------+
|	 279	 |
+---------------------------+
1 row in set (0.01 sec)

Find the Top-10 Source IPs:

	 mysql> select count(*) as TOTAL, SourceIP
	 from NetData
	 GROUP BY SourceIP
	 ORDER BY TOTAL DESC
	 LIMIT 10;
+--------+------------------+
|	TOTAL	 |	SourceIP	 |
+--------+------------------+
841	109.74.193.253
76	2.86.13.236
38	204.74.106.104
25	175.41.186.83
24	89.149.6.76
22	90.155.53.34
20	218.248.241.3
20	114.134.15.205
19	200.29.243.21
17	14.139.5.22
+--------+------------------+
10 rows in set (0.03 sec)

Here is the output of the Perl script for the network data I captured:

$./netData.pl login.tcpdump
Erroneous IP!!

count(protocol)	 protocol
3756	 DNS
142	 SSH
100	 TCP

COUNT(*)	 protocol	 avg(length)
3756	 DNS	 107.3387
142	 SSH	 354.0704
100	 TCP	 66.6400

http://www.youtube.com/watch?v=CWOCqGmu1aI

