
COLUMNS

52   ;login: VOL. 38, NO. 1

David N. Blank-Edelman is the
Director of Technology at the
Northeastern University College
of Computer and Information

Science and the author of the O’Reilly book
Automating System Administration with Perl (the
second edition of the Otter book), available
at purveyors of fine dead trees everywhere.
He has spent the past 24+ years as a system/
network administrator in large multi-platform
environments, including Brandeis University,
Cambridge Technology Group, and the MIT
Media Laboratory. He was the program chair
of the LISA ‘05 conference and one of the LISA
‘06 Invited Talks co-chairs. David is honored
to have been the recipient of the 2009 SAGE
Outstanding Achievement Award and to serve
on the USENIX Board of Directors beginning in
June of 2010.  dnb@ccs.neu.edu

If you’ve noticed a spate of “here’s how to use Perl to talk to X Web service” topics
in this column lately, it probably isn’t a coincidence. I have to confess, I’m a sucker
for a Web service that gives you super powers just by using the simple API they
provide. For example, in our last column we looked at how to easily translate text in
and out of a large number of the world’s major languages using Google Translate’s
API. For this column, we’re going to do all sorts of fun things with phones from
Perl. If you’ve ever wanted a way to send and receive SMS and voice messages,
retrieve input from a caller, and stuff like that, have I got a column for you.

Like last time, in this column, we’re going to be using an API from a commercial
vendor. I am not a shill for that vendor. They are not paying me to promote their
product. Like last time, I’m actually paying them to use the service. There are other
vendors offering similar services. I’m choosing this one because their API is easy
to use and the cost for small volumes of use is sufficiently low that it doesn’t cost
very much to play around (and, in fact, they offer a free account should you want to
pay nothing during your playtime). Their API has the added benefit of using things
that we’ve seen in past columns such as a REST and XML. You won’t need to refer-
ence past columns, but if you’re an avid reader of this column (hi mom!), a number
of things we’ll be looking at should be comfortably familiar.

So who is the lucky vendor this time that gets to take my money? In this column
we’re going to work with the Twilio API. As we’ve done in the past, I’m going to
hold off on talking about the Twilio-specific Perl modules available for a bit just
so we can get a good handle on the basics of what is going on before we let someone
else’s code do the driving. In this case looking at the underlying stuff is doubly
important because Twilio’s API and the Perl modules that interact with it assume
you understand TwiML, their little mini-XML dialect for command and control.
And that’s just where we are going to start.

Twinkle, Twinkle, Little TwiML
We’re starting a Perl-themed column with an XML dialect because in order to use
their service, you’ll be slinging TwiML around lots. In the past I’ve praised XML
because it can be superbly readable as long as you don’t take pains to thwart this
quality (I’m looking at you Microsoft Office). TwiML is no exception; it basically
consists of a set of “verb” tags that instruct the service to do something. For
example, if we wanted to ask it to send an SMS message, we could write:

Practical Perl Tools
I Just Called to Say $_

D A V I D N . B L A N K - E D E L M A N

	 ;login: FEBRUARY 2013 Practical Perl Tools   53

 <?xml version=”1.0” encoding=”UTF-8”?>

 <Response>

 <Sms from=”+14105551234” to=”+14105556789”>

	 The king stay the king.</Sms>

 </Response>

That’s a direct quote from their API docs at https://www.twilio.com/docs/api
(which I just had to quote because of the embedded reference). If we wanted to
call our special Twilio number (more on this shortly) and have it speak to us, we
could write:

 <?xml version=”1.0” encoding=”UTF-8”?>

 <Response>

 <Say>Twinkle, Twinkle, little TwiML</Say>

 </Response>

The first line is the standard XML declaration. The commands we write will live
in a response tag (you’ll see why it is called this when we get to talking about REST
stuff). Twilio will perform the commands, and if the context is a phone call as in
the second example, it will hang up at that point.

There are other verbs available with names that all make sense such as Dial to dial
a call, Play to play a sound file on to the call from a specified URL, Record to record
sound from the call, and so on. The only one that may not be obvious at first blush is
Gather. Gather is used to receive input from a caller (i.e., “Press 1 to speak to Larry
Wall...”). We’ll see an example of that later in this column.

The REST of the Story
To actually use this stuff, we need to see how to set up conversations with the
Twilio’s server. This is where the REST stuff we mentioned in the beginning
comes in. Let’s dive right into some useful examples to see how this works. The
TwiML part won’t show up until our second example, so we’ll set that aside for a
brief moment as we look at some code for sending an SMS message:

 use HTTP::Request::Common qw(POST);

 use LWP::UserAgent; # can’t use LWP::Simple to POST

 use strict;

 my $tw_serverURL = ‘https://api.twilio.com’;

 my $tw_APIver = ‘2010-04-01’;

 my $tw_acctsid = ‘{YOUR ACCT SID HERE}’;

 my $tw_authtoken = ‘{YOUR AUTH TOKEN HERE}’;

	

 my $tw_number = ‘{YOUR TWILIO NUMBER}’;

 my $test_number = ‘{A VALIDATED NUMBER}’;

 # create the user agent and give it credentials to use	

 my $ua = LWP::UserAgent->new;

 $ua->credentials(‘api.twilio.com:443’, ‘Twilio API’,

	 $tw_acctsid, $tw_authtoken);

54   ;login: VOL. 38, NO. 1

 # create a request

 my $req = POST “$tw_serverURL/$tw_APIver/Accounts/

	 $tw_acctsid/SMS/Messages”,

 [

 ‘From’ => “$tw_number”,

 ‘To’ => “$test_number”,

 ‘Body’ => ‘Just a spiffy message!’,

];

	 # ...and send it

 my $response = $ua->request($req);

 if ($response->is_success) {

 print $response->decoded_content;

 }

 else {

 die $response->status_line;

 }

Let’s walk through this fairly generic LWP::UserAgent code together. After loading
the modules we’ll need, we define some variables that include the URL we’re going
to contact (their server plus API version), the API SID and token (user name and
password we get when we sign up), and the numbers we’ll be using. When you sign
up for Twilio, you are given the opportunity to choose a number from which your
text and voice messages will be sent and received. Once you pay for the service, you
are also able to purchase additional numbers. At demo signup time you are also
prompted to validate a number (i.e., prove you own it)—their system calls you and
asks you to provide a passcode the Web site shows you—to act as a test number. You
will need to use this test number as the source/destination number to call or be
called by your Twilio number until you become a paying customer.

With these things defined, we can create a UserAgent object (the thing that is
going to pretend to be a browser) and give it the credentials it will need to access
that REST API URL. We construct the request by specifying the URL and the
parameters we’ll want to pass in when we do the POST. We send it off, and then
print the response we get back. Here’s a sample response that I’ve pretty printed so
it is easier to read:

 <?xml version=”1.0”?>

 <TwilioResponse>

 <SMSMessage>

 <Sid>SMb70e55827ff00117fd88060902ffddddd</Sid>

 <DateCreated>Mon, 26 Nov 2012 02:56:44 +0000</DateCreated>

 <DateUpdated>Mon, 26 Nov 2012 02:56:44 +0000</DateUpdated>

 <DateSent/>

 <AccountSid>{MY ACCOUNT SID}</AccountSid>

 <To>{THE VALIDATED NUMBER}</To>

 <From>{MY TWILIP NUMBER}</From>

 <Body>Just a spiffy message!</Body>

 <Status>queued</Status>

 <Direction>outbound-api</Direction>

 <ApiVersion>2010-04-01</ApiVersion>

 <Price/>

	 ;login: FEBRUARY 2013 Practical Perl Tools   55

 <Uri>/2010-04-01/Accounts/{MY_ACCOUNT_SID}/SMS/Messages/

 SMb70e55827ff00117fd88060902ffddddd</Uri>

 </SMSMessage>

 </TwilioResponse>

It is basically an echo of the message we sent, but I want to draw your attention to
one of the elements:

 <Status>queued</Status>

When you send a message, it gets queued to be sent. Unlike some services, you do
not stay connected to the server until the message is actually sent. This means you
don’t get a definitive response code back from the request that indicates success or
failure on the sending. How you get the response back brings us to the REST stuff…

In my request, I didn’t include the optional StatusCallback parameter. If I were to
include that in my request, e.g.,

 my $req = POST “$tw_serverURL/$tw_APIver/Accounts/$tw_acctsid/SMS/

Messages”,

 [

 ‘From’ => “$tw_number”,

 ‘To’ => “$test_number”,

 ‘Body’ => ‘Just a spiffy message!’,

 ‘StatusCallback’ => ‘http://your.Web.server.com/messagestat.pl’,

];

Twilio would fire off a POST request to that URL once the message has gone
through (or not). This callback style of programming shows up throughout the API,
so if you plan to do much with it you’ll need a Web server where you can place code
that will receive messages from their server. Here’s a very simple example we could
use as messagestat.pl to receive a message from them:

 use CGI;

 use Data::Dumper;

 my $q = CGI->new;

 my $params = $q->Vars;

 open my $OUTPUT, ‘>>’, ‘twilio.out’ or die “Can’t write output: $!”;

 print $OUTPUT Dumper \$params;

 close $OUTPUT;

This receives the POST from Twilio’s servers (and anyone who can contact that
URL) and writes the parameters of the request to a file. If we look at the contents of
the file, we see it says:

$VAR1 = \{

 ‘AccountSid’ => ‘{MY_ACCOUNT_SID}’,

 ‘SmsStatus’ => ‘sent’,

 ‘Body’ => ‘Just a spiffy message!’,

 ‘SmsSid’ => ‘SMe1620214513ccee199851ad9f13ffff’,

 ‘To’ => ‘{THE VALIDATED NUMBER}’,

 ‘From’ => ‘{MY TWILIP NUMBER}’,

 ‘ApiVersion’ => ‘2010-04-01’

 };

56   ;login: VOL. 38, NO. 1

Here we can see that the SmsStatus was ‘sent’, so the message went out. If for some
reason it couldn’t be sent successfully, that would have been reflected in the status
posted to our CGI script.

Early in this section I mentioned “conversations with their server,” but the last
example didn’t offer anything particularly scintillating in this regard. Let’s do
something more sophisticated, this time with a voice call instead of an SMS mes-
sage. Let’s do a two-question telephone poll from Perl using Twilio. This will allow
us to bring the TwiML we learned earlier back into the picture.

The first step is to tell Twilio’s servers to initiate a voice call. I’m going to leave
out all of the initialization code from the example below to save space because it
is exactly the same as the previous example. Here’s the one part of the code that
changes:

 my $req = POST “$tw_serverURL/$tw_APIver/Accounts/$tw_acctsid/Calls”,

 [

 ‘From’ => “$tw_number”,

 ‘To’ => “$test_number”,

 ‘Url’ => ‘http://your.Web.server.com/voicepoll.pl’,

 ‘StatusCallback’ => ‘http://your.Web.server.com/messagestat.pl’,

];

The first change is we’re requesting a different kind of REST object; we’re asking
for Calls instead of SMS/Messages. The second change is we’ve told Twilio that
once it initiates a call, it should contact the voicepoll.pl script for further instruc-
tions to follow once the call has connected. And this is where TwiML becomes
important.

The URL pointed to by the Url parameter is expected to provide Twilio’s server
with a TwiML document it should process. Here’s our voicepoll.pl script that will
provide this document:

 use CGI qw(:standard);

 use strict;

 my $q = CGI->new;

 my $params = $q->Vars;

 print $q->header(‘text/xml’);

 if (not $params->{‘Digits’}) {

 print <<POLL;

 <?xml version=”1.0” encoding=”UTF-8”?>

 <Response>

 <Gather numDigits=”1” action=”/voicepoll.pl”>

 <Say>Welcome to the login poll</Say>

 <Say>Press 1 if you are happy and you know it</Say>

 <Say>Press 2 if you really want to show it</Say>

 </Gather>

 <Say>No input, toodles!</Say>

 </Response>

 POLL

 }

	 ;login: FEBRUARY 2013 Practical Perl Tools   57

 else {

 if ($params->{‘Digits’} ne “3”) {

 open my $RESPONSE, ‘>>’, ‘twresp.out’

 or die “Can’t write to twrestp.out”;

 print $RESPONSE “Received $params->{‘Digits’}\n”;

 close $RESPONSE;

 print <<POLL;

 <?xml version=”1.0” encoding=”UTF-8”?>

 	 <Response>

 	 <Gather numDigits=”1” action=”/voicepoll.pl”>

 	 <Say>Next Question</Say>

 	 <Say>Press 1 if you are happy and you know it</Say>

 	 <Say>Press 2 if you really want to show it</Say>

 	 <Say>Press 3 if you are suffering from ennui</Say>

 	 </Gather>

 	 <Say>No input, toodles!</Say>

 	 </Response>

 POLL

 }

 else {

 open my $RESPONSE, ‘>>’, ‘twresp.out’

 or die “Can’t write to twrestp.out”;

 print $RESPONSE “END POLL\n”;

 close $RESPONSE;

 print <<BYEBYE;

 <?xml version=”1.0” encoding=”UTF-8”?>

 	 <Response>

 	 <Say>End of Poll, thanks!</Say>

 	 </Response>

 BYEBYE

 }

 }

Here are two small caveats before we look at what the script and its embedded
TwiML is doing. First, this script is going to spit out TwiML in the most straight-
forward but uncouth way possible. It’s just a bunch of print statements using
HEREDOC syntax (<<). If you were doing this for real, you’d want to use some sort
of XML generator or one of the custom Twilio modules we’ll get to in a moment.
Second, all TwiML fetched from the servers is coming from this one script with a
bunch of dumb control logic. In real life it might make more sense to have differ-
ent responses to different queries from their servers handled by different scripts
(“Press 1 for Sales” then points to the sales.pl script and so on).

Let’s walk through what is going on one step at a time. We used a modified version
of our SMS script to ask Twilio to initiate a call and then have it fetch the URL
for the CGI script above. This CGI script checks to see whether it has received a
parameter called ‘Digits’ for reasons you’ll see in just a second. If that parameter
isn’t defined yet (true because this will be the first time it has been accessed by
Twilio for this call), it prints the following TwiML back to their server:

58   ;login: VOL. 38, NO. 1

 <?xml version=”1.0” encoding=”UTF-8”?>

 <Response>

 <Gather numDigits=”1” action=”/voicepoll.pl”>

 <Say>Welcome to the login poll</Say>

 <Say>Press 1 if you are happy and you know it</Say>

 <Say>Press 2 if you really want to show it</Say>

 </Gather>

 <Say>No input, toodles!</Say>

 </Response>

This TwiML uses “Gather,” a verb we haven’t seen before. Gather will attempt
to read keypad input from the call (i.e., the caller pressed the phone’s number
buttons). In the TwiML, there are two attributes being passed in for Gather: “num-
Digits” for the number of digits we hope to get back (one) and “action” for the URL
that will be called if Gather is successful.

As I mentioned above, the TwiML makes another call to the voicepoll.pl script in
<Gather>, but it could easily have been told to fetch some other CGI script for its
next batch of TwiML. Embedded in this Gather call are a number of <Say> ele-
ments used to speak the menu for the person on the line. Because they are listed as
sub-elements of Gather, this means that the Gather is active while they are speak-
ing. The caller doesn’t have to wait to press a button. She or he can interrupt the
<Say> directives, and the Gather will complete and immediately pass the results to
the URL specified in the action attribute (bypassing anything else in this TwiML
file). The action URL is used as the source of the next TwiML directive, and the
control flow continues using whatever TwiML it provides. Should the <Gather>
fail, e.g., time out if it doesn’t get input, the directives outside of the <Gather> are
run. In this case, a final <Say> command will bid the caller adieu before hanging up.

Let’s assume the <Gather> was able to retrieve a choice from the caller and see
what happens next. The CGI script specified in its action attribute gets called with
the results from the Gather command being passed as a parameter called ‘Digits’.
This is why the script looks to see whether it has received that parameter. If it
hasn’t, it knows it is the first time it is being called. If it gets the number 3 in that
parameter, it will immediately print the “BYEBYE” TwiML code. Any other num-
ber tells the script to print the Next Question TwiML. All along the way, we collect
the results we received to a response file that accumulates lines like:

 Received 2

 Received 5

 Received 1

 END POLL

This is just to show off the input we received. If we really cared about it we’d want
to store it in a more considered way, like a database. At the very least, we’d want a
way to store things so multiple polls going at once record their results properly. And
speaking of results, in the script that originated the call, we kept the

 ‘StatusCallback’ => ‘http://your.Web.server.com/messagestat.pl’,

line. Just like with an SMS message, this URL gets called after the operation has
been completed (successfully or unsuccessfully). In the case of a voice message, we
get a cool set of parameters posted to the messagestat.pl URL:

	 ;login: FEBRUARY 2013 Practical Perl Tools   59

‘AccountSid’ => ‘{MY_ACCOUNT_SID}’,

 ‘ToZip’ => ‘02283’,

 ‘FromState’ => ‘MA’,

 ‘Called’ => ‘{THE VALIDATED NUMBER}’,

 ‘FromCountry’ => ‘US’,

 ‘CallerCountry’ => ‘US’,

 ‘CalledZip’ => ‘02283’,

 ‘Direction’ => ‘outbound-api’,

 ‘FromCity’ => ‘CAMBRIDGE’,

 ‘CalledCountry’ => ‘US’,

 ‘Duration’ => ‘1’,

 ‘CallerState’ => ‘MA’,

 ‘CallSid’ => ‘CA4fdd2c584cd58230f9e7413c452fffff’,

 ‘CalledState’ => ‘MA’,

 ‘From’ => ‘{MY TWILIO NUMBER}’,

 ‘CallerZip’ => ‘02139’,

 ‘FromZip’ => ‘02139’,

 ‘CallStatus’ => ‘completed’,

 ‘ToCity’ => ‘BOSTON’,

 ‘ToState’ => ‘MA’,

 ‘To’ => ‘{THE VALIDATED NUMBER}’,

 ‘CallDuration’ => ‘17’,

 ‘ToCountry’ => ‘US’,

 ‘CallerCity’ => ‘CAMBRIDGE’,

 ‘ApiVersion’ => ‘2010-04-01’,

 ‘Caller’ => ‘{MY TWILIO NUMBER}’,

 ‘CalledCity’ => ‘BOSTON’

Yup, a little bit of geolocation is thrown in for free.

There’s one last category of operations I want to mention (but not demonstrate for
space reasons). So far we haven’t seen any code for the case where someone calls
in to your Twilio number or sends an SMS message to it. When you set a Twilio
number up, you associate two URLs with it: one for voice, the other for SMS. When
a call or an SMS message comes in to that number, Twilio attempts to post infor-
mation about the incoming call/message to the appropriate URL (as parameters,
same as we’ve seen before) and expects to be handed back some TwiML telling it
what to do. That CGI script can do whatever you need with the incoming informa-
tion (e.g., log the parameters) and direct Twilio to do something (like start a phone
poll or take an order for a pizza).

WWW::Twilio::API and WWW::Twilio::TwiML
I’d like to end with a quick look at the two special purpose Perl modules for inter-
acting with Twilio. The first lets you make API calls without having to trouble
your pretty little head with all of the LWP::UserAgent details. Instead of our first
code example, we could write:

use WWW::Twilio::API;

 my $twilio = WWW::Twilio::API->new(

 AccountSid => ‘{MY ACCOUNT SID}’,

 AuthToken => ‘{MY ACCOUNT TOKEN}’,

);

60   ;login: VOL. 38, NO. 1

 my $response = $twilio->POST(

 ‘SMS/Messages’,

 ‘From’ => ‘{MY TWILIO NUMBER}’,

 ‘To’ => ‘{THE VALIDATED NUMBER}’,

 ‘Body’ => ‘Just a spiffy message!’

);

WWW::Twilio::API lets you use all of the other API calls we’ve seen before. For
example, in the WWW::Twilio::API doc, we see an example of making a call:

 $twilio->POST(

 ‘Calls’,

 To => ‘5558675309’,

 From => ‘4158675309’,

 Url => ‘http://www.myapp.com/myhandler’

);

The other special purpose Twilio module courtesy of the same author is
WWW::Twilio::TwiML. It is designed to make authoring TwiML easier, but
I’ll say up front that I’m not entirely clear it is much easier to use than any of
the other XML authoring modules that are available. I think it holds the most
promise for people who enjoy writing chained method expressions (i.e., code
with lots of thing->thing->thing statements). For example, if we wanted to
output the first set of TwiML we printed in voicepoll.pl above, we would write:

 use WWW::Twilio::TwiML;

 my $twiml = WWW::Twilio::TwiML->new;

 $twiml

 ->Response

 ->Gather({ action => ‘/voicepool.pl’ })

 ->Say(‘Welcome to the login poll’)

 ->parent->Say(‘Press 1 if you are happy and you know it’)

 ->parent->Say(‘Press 2 if you really want to show it’)

 ->parent->parent->Say(‘No input, toodles!’);

 print $twiml->to_string;

The chained statement can be read something like this: “Create a <Response> ele-
ment. In this element create a <Gather> element. In the <Gather> element, create
a <Say> element. Now, instead of creating the next <Say> within the current <Say>
element, put it in the parent (the <Gather>). Do that again for the next <Say>. Then,
go to that element’s grandparent (the <Response> element) and place a final <Say>
element in it.” If your brain has no problems mapping the chained steps to the pro-
cess of building our little XML tree structure, great, this might be the module for
you. If not, seek another solution.

And with that, we now have a good start on how to use Twilio’s API from Perl to do
all sort of fun phone-related stuff. Take care and I’ll see you next time.

