
38    J U N E 20 14  VO L . 3 9, N O. 3 	 www.usenix.org

COLUMNS

Python Gets an Event Loop (Again)
D A V I D B E A Z L E Y

M arch 2014 saw the release of Python 3.4. One of its most notable
additions is the inclusion of the new asyncio module to the stan-
dard library [1]. The asyncio module is the result of about 18

months of effort, largely spearheaded by the creator of Python, Guido van
Rossum, who introduced it during his keynote talk at the PyCon 2013 con-
ference. However, ideas concerning asynchronous I/O have been floating
around the Python world for much longer than that. In this article, I’ll give
a bit of historical perspective as well as some examples of using the new
library. Be aware that this topic is pretty bleeding edge—you’ll probably need
to do a bit more reading and research to fill in some of the details.

Some Basics: Networking and Threads
If you have ever needed to write a simple network server, Python has long provided modules
for socket programming, processes, and threads. For example, if you wanted to write a simple
TCP/IP echo server capable of handling multiple client connections, an easy way to do it is to
write some code like this:

 # echoserver.py

 from socket import socket, AF_INET, SOCK_STREAM

 import threading

 def echo_client(sock):

 while True:

 data = sock.recv(8192)

 if not data:

 break

 sock.sendall(data)

 print(‘Client closed’)

 sock.close()

 def echo_server(address):

 sock = socket(AF_INET, SOCK_STREAM)

 sock.bind(address)

 sock.listen(5)

 while True:

 client_sock, addr = sock.accept()

 print(‘Connection from’, addr)

 t = threading.Thread(target=echo_client,

 args=(client_sock,))

 t.start()

David Beazley is an open source
developer and author of the
Python Essential Reference (4th
Edition, Addison-Wesley, 2009)

and Python Cookbook (3rd Edition, O’Reilly
Media, 2013). He is also known as the creator
of Swig (http://www.swig.org) and Python
Lex-Yacc (http://www.dabeaz.com/ply.html).
Beazley is based in Chicago, where he also
teaches a variety of Python courses.
dave@dabeaz.com

www.usenix.org	   J U N E 20 14  VO L . 3 9, N O. 3  39

COLUMNS
Python Gets an Event Loop (Again)

 if __name__ == ‘__main__’:

 echo_server((‘‘, 25000))

Although simple, this style of programming is the foundation for
Python’s socketserver module (called SocketServer in Python
2). socketserver, in turn, is the basis of Python’s other built-in
server libraries for HTTP, XML-RPC, and similar.

Asynchronous I/O
Even though programming with threads is a well-known and rel-
atively simple approach, it is not always appropriate in all cases.
For example, if a server needs to manage a very large number of
open connections, running a program with 10,000 threads may
not be practical or efficient. For such cases, an alternative solu-
tion involves creating an asynchronous or event-driven server
built around low-level system calls such as select() or poll().
The underlying approach is based on an underlying event-loop
that constantly polls all of the open sockets and triggers event-
handlers (i.e., callbacks) on objects to respond as appropriate.

Python has long had a module, asyncore, for supporting asyn-
chronous I/O. Here is an example of the same echo server imple-
mented using it:

 # echoasyncore.py

 from socket import AF_INET, SOCK_STREAM

 import asyncore

 class EchoClient(asyncore.dispatcher):

 def __init__(self, sock):

 asyncore.dispatcher.__init__(self, sock)

 self._outbuffer = b’’

 self._readable = True

 def readable(self):

 return self._readable

 def handle_read(self):

 data = self.recv(8192)

 self._outbuffer += data

 def handle_close(self):

 self._readable = False

 if not self._outbuffer:

 print(‘Client closed connection’)

 self.close()

 def writable(self):

 return bool(self._outbuffer)

 def handle_write(self):

 nsent = self.send(self._outbuffer)

 self._outbuffer = self._outbuffer[nsent:]

 if not (self._outbuffer or self._readable):

 self.handle_close()

 class EchoServer(asyncore.dispatcher):

 def __init__(self, address):

 asyncore.dispatcher.__init__(self)

 self.create_socket(AF_INET, SOCK_STREAM)

 self.bind(address)

 self.listen(5)

 def readable(self):

 return True

 def handle_accept(self):

 client, addr = self.accept()

 print(‘Connection from’, addr)

 EchoClient(client)

 EchoServer((‘‘, 25000))

 asyncore.loop()

In this code, the various objects EchoServer and EchoClient are
really just wrappers around a traditional network socket. All of
the important logic is found in callback methods such as handle

_accept(), handle_read(), handle_write(), and so forth. Finally,
instead of running a thread or process, the server runs a central-
ized event-loop initiated by the final call to asyncore.loop().

Wilted Async?
Although asyncore has been part of the standard library since
Python 1.5.2, it’s always been a bit of an abandoned child.
Programming with it directly is difficult—involving layers
upon layers of callbacks. Moreover, the standard library doesn’t
provide any other support to make asyncore support higher-
level protocols (e.g., HTTP) or to interoperate with other parts
of Python (e.g., threads, queues, subprocesses, pipes, signals,
etc.). Thus, if you’ve never actually encountered any code that
uses asyncore in the wild, you’re not alone. Almost nobody uses
it—it’s just too painful and low-level to be a practical solution for
most programmers.

Instead, you’ll more commonly find asynchronous I/O supported
through third-party frameworks such as Twisted, Tornado, or
Gevent. Each of these frameworks tends to be a large world unto
itself. That is, they each provide their own event loop, and they
provide asynchronous compatible versions of common library
functions. Although it is possible to perform a certain amount of
adaptation to make these different libraries work together, it’s all
a bit messy.

Enter asyncio
The asyncio library introduced in Python 3.4 represents a modern
attempt to bring asynchronous I/O back into the standard library
and to provide a common core upon which additional async-
oriented libraries can be built. asyncio also aims to standardize
the implementation of the event-loop so that it can be adapted to
support existing frameworks such as Twisted or Tornado.

40    J U N E 20 14  VO L . 3 9, N O. 3 	 www.usenix.org

COLUMNS
Python Gets an Event Loop (Again)

The definitive description of asyncio can be found in PEP-3156
[2]. Rather than rehash the contents of the admittedly dense
PEP, I’ll provide a simple example to show what it looks like to
program with asyncio. Here is a new implementation of the echo
server:

 # echoasync.py

 from socket import socket, AF_INET, SOCK_STREAM

 import asyncio

 loop = asyncio.get_event_loop()

 @asyncio.coroutine

 def echo_client(sock):

 while True:

 data = yield from loop.sock_recv(sock, 8192)

 if not data:

 break

 yield from loop.sock_sendall(sock, data)

 print(‘Client closed’)

 sock.close()

 @asyncio.coroutine

 def echo_server(address):

 sock = socket(AF_INET, SOCK_STREAM)

 sock.bind(address)

 sock.listen(5)

 sock.setblocking(False)

 while True:

 client_sock, addr = yield from loop.sock_accept(sock)

 print(‘Connection from’, addr)

 asyncio.async(echo_client(client_sock))

 if __name__ == ‘__main__’:

 loop.run_until_complete(echo_server((‘‘, 25000)))

Carefully compare this code to the first example involving
threads. You will find that the code is virtually identical except
for the mysterious @asyncio.coroutine decorator and use of
the yield from statements. As for those, what you’re seeing is a
programming style based on coroutines—in essence, a form of
cooperative user-level concurrency.

A full discussion of coroutines is beyond the scope of this article;
however, the general idea is that each coroutine represents a kind
of user-level “task” that can be executed concurrently. The yield

from statement indicates an operation that might potentially
block or involve waiting. At these points, the coroutine can be
suspended and then resumed at a later point by the underlying
event loop. To be honest, it’s all a bit magical under the covers. I
previously presented a PyCon tutorial on coroutines [3]. How-
ever, the yield from statement is an even more modern develop-
ment that is only available in Python 3.3 and newer, described in
PEP-380 [4]. For now, just accept the fact that the yield from is

required and that you’ve probably never seen it used in any previ-
ous Python code.

Getting Away from Low-Level Sockets
As shown, the sample echo server is directly manipulating a
low-level socket. However, it’s possible to write a server that
abstracts the underlying protocol away. Here is a slightly modi-
fied example that uses a higher-level transport interface:

 import asyncio

 loop = asyncio.get_event_loop()

 @asyncio.coroutine def

 echo_client(reader, writer):

 while True:

 data = yield from reader.readline()

 if not data:

 break

 writer.write(data)

 print(‘Client closed’)

 if __name__ == ‘__main__’:

 fut = asyncio.start_server(echo_client, ‘‘, 25000)

 loop.run_until_complete(fut)

 loop.run_forever()

As shown, this runs as a TCP/IP echo server. However, you can
change it to a UNIX domain server if you simply change the last
part as follows:

 if __name__ == ‘__main__’:

 fut = asyncio.start_unix_server(echo_client, ‘/tmp/spam’)

 loop.run_until_complete(fut)

 loop.run_forever()

In both cases, the underlying protocol is abstracted away. The
echo_client() function simply receives reader and writer objects
on which to read and write data—it doesn’t need to worry about
the exact protocol being used to transport the bytes.

More Than Sockets
A notable feature of asyncio is that it’s much more than a simple
wrapper around sockets. For example, here’s a modified client
that feeds its data to a subprocess running the UNIX wc com-
mand and collects the output afterwards:

 from asyncio import subprocess

 @asyncio.coroutine

 def echo_client(reader, writer):

 proc = yield from asyncio.create_subprocess_exec(‘wc’,

 stdin=subprocess.PIPE,

 stdout=subprocess.PIPE)

 while True:

 data = yield from reader.readline()

www.usenix.org	   J U N E 20 14  VO L . 3 9, N O. 3  41

COLUMNS
Python Gets an Event Loop (Again)

 if not data:

 break

 proc.stdin.write(data)

 writer.write(data)

 proc.stdin.close()

 stats = yield from proc.stdout.read()

 yield from proc.wait()

 print(“Client closed:”, stats.decode(‘ascii’))

Here is an example of a task that simply sleeps and wakes up
periodically on a timer:

 @asyncio.coroutine

 def counter():

 n = 0

 while True:

 print(“Counting:”, n)

 yield from asyncio.sleep(5)

 n += 1

 if __name__ == ‘__main__’:

 asyncio.async(counter())

 loop.run_forever()

There is even support for specialized tasks such as attaching a
signal handler to the event loop. For example:

 import signal

 def handle_sigint():

 print(‘Quitting’)

 loop.stop()

 loop.add_signal_handler(signal.SIGINT, handle_sigint)

Last, but not least, you can delegate non-asynchronous work to
threads or processes. For example, if you had a burning need for
a task to print out Fibonacci numbers using a horribly inefficient
implementation and you didn’t want the computation to block
the event loop, you could write code like this:

 import asyncio

 from concurrent.futures import ThreadPoolExecutor

 loop = asyncio.get_event_loop()

 def fib(n):

 if n <= 2:

 return 1

 else:

 return fib(n-1) + fib(n-2)

 @asyncio.coroutine

 def fibonacci():

 n = 1

 while True:

 r = yield from loop.run_in_executor(pool, fib, n)

 print(“Fib(%d): %d” % (n, r))

 yield from asyncio.sleep(1)

 n += 1

 if __name__ == ‘__main__’:

 pool = ThreadPoolExecutor(8)

 asyncio.async(fibonacci())

 loop.run_forever()

In this example, the loop.run_in_executor() arranges to run a
user-supplied function (fib) in a separate thread. The first argu-
ment supplies a thread-pool or process-pool as created by the
concurrent.futures module.

Where to Go from Here?
There is much more to asyncio than presented here. However, I
hope the few examples here have given you a small taste of what
it looks like. For more information, you might consult the official
documentation [1]; if you’re like me, however, you’ll find the
documentation a bit dense and lacking in examples. Thus, you’re
probably going to have to fiddle around with it as an experiment.
Searching the Web for “asyncio examples” can yield some addi-
tional information and insight for the brave. In the references
section, I’ve listed a couple of presentations and sites that have
more examples [5, 6].

As for the future, it will be interesting to see whether asyncio is
adopted as a library for writing future asynchronous libraries and
applications. As with most things Python 3, only time will tell.

If you’re still using Python 2.7, the Trollius project [7] is a
backport of the asyncio library to earlier versions of Python.
The programming interface isn’t entirely the same because of
the lack of support for the “yield from” statement, but the overall
architecture and usage are almost identical.

References
[1] asyncio (official documentation): http://docs.python.org
/dev/library/asyncio.html.

[2] PEP 3156: http://python.org/dev/peps/pep-3156/.

[3] David Beazley, “A Curious Course on Coroutines and
Concurrency”: http://www.dabeaz.com/coroutines.

[4] PEP 380: http://python.org/dev/peps/pep-0380/.

[5] Saul Ibarra Corretge, “A Deep Dive Into PEP-3156 and the
New asyncio Module”: http://www.slideshare.net/saghul
/asyncio.

[6] Feihong Hsu, “Asynchronous I/O in Python 3”: http://
www.slideshare.net/megafeihong/tulip-24190096.

[7] Trollius project: https://pypi.python.org/pypi/trollius.

