
www.usenix.org	   A P R I L 20 13  VO L . 3 8 N O. 2  39

iVoyeur
Nagios XI (fin)

D A V E J O S E P H S E N

Dave Josephsen is the author
of Building a Monitoring
Infrastructure with Nagios
(Prentice Hall PTR, 2007)

and is Senior Systems Engineer at DBG, Inc.,
where he maintains a gaggle of geographically
dispersed server farms. He won LISA ‘04’s
Best Paper award for his co-authored work on
spam mitigation, and he donates his spare time
to the SourceMage GNU Linux Project.  
dave-usenix@skeptech.org

W e have in our community certain long-running esthetic and
philosophical disagreements to which we sometimes refer as
“religious battles.” The ancient vi vs Emacs battle probably

exemplifies this practice, there being both a “Cult of vi” [1] as well as a
“Church of Emacs” [2] (and even an alt.religion.emacs mailing list).

Being a pedantic sort of fellow, I sometimes wonder how we, as a community, struck upon
that particular adjective and how the theists among us feel about our use of it in a pejora-
tive sense. It may just be me, but when we describe these battles as “religious” it seems to
imply some arbitrary and thoughtless or perhaps involuntary choosing of sides. A heritage
pushed on us, or the side of the river where we are born; an idea we don’t understand but
for which we are forever doomed to be an apologist, or an assertion we doubt and yet must
defend with our lives.

But in truth this is rarely the case with the actual battles. Everyone I know who has chosen
either vi or Emacs has done so deliberately, not only fully aware of the specific reasons why,
but unmindful of this global struggle for text editor domination (except for the MIT gradu-
ates among us). There are, after all, real and practical reasons for choosing one or the other.

I suppose those things are sometimes fair to say about religion among the general public, but
in my experience it’s not true of the theists in our community, who are likely to have chosen
their beliefs with the same unbiased thoughtfulness they used in choosing their text editor.
I don’t say that out of ignorance or political correctness. Some of the best conversations I’ve
had at LISA have been late night semi-drunken arguments about the nature of the universe
with atheists, agnostics, and theists of various description. These usually start in the deep-
end and continue into vast and unknown waters where we usually encounter Descartes,
Rutherford, Aquinas, Darwin, Locke, and many other gentlemen of their ilk.

It might be that, having chosen a side, it’s difficult for us to understand why other people
would choose something different, and therefore those people over there who chose differ-
ently look strange and silly. And by strange I mean dancing around with snakes, healing each
other in big white tents, holding literary critiques with questionable conclusions at bible
camp [3] strange. Do those people have ANY idea what they’re doing? That seems a more apt
description of the Emacs vs vi battle, but it’s not fair to say about religion.

The problem is: all of that strange stuff I mentioned—that bible camp snake healing—none
of that really has anything to do with theism. It’s just people being weird and silly in a
god-themed sort of way. If I surgically removed religion from their minds tomorrow, they’d
just channel all of that manic, scatterbrained silliness into weird practices in the name of
science, and find entirely new reasons to knock on your door, lobby for weird laws, and write
questionable things in textbooks.

Insomuch as this is what we mean when we point at something and call it a religious debate,
I’m beginning to think we’ve made an unfortunate choice in that particular adjective. At
least we’ve done a poor job of assessing root cause. Beliefs don’t hold people, it’s the other way
around. If people are acting silly in the name of religion, it’s unfair of us to blame religion.

40    A P R I L 20 13  VO L . 3 8 N O. 2 	 www.usenix.org

COLUMNS
iVoyeur

Isn’t the fact that we have these sorts of debates in the nerdo-
sphere—to the extent that we’ve literally formed tongue-in-
cheek churches around them—proof of something decidedly not
religious? Some agnostic quirk of human nature that inclines
us to irrationally take sides against each other over trivialities?
Isn’t “The Church of Emacs” just nerds being silly in a god-
themed way?

We do this an awful lot actually, from Maxwell’s demon [4] to
“magic smoke” [5] to “The Cathedral and the Bazaar” [6], we
nerds have surrounded ourselves with supernatural imagery
since the beginning. That’s quite natural I think, given the quan-
tity of time we spend with one foot in another world, designing,
building, and planning in non-physical, supernatural space.

Nagios, which happens to be a recursive acronym for “Nagios
Ain’t Gonna Insist On Sainthood,” is no stranger to the phenom-
enon we describe as a religious debate. In my first article on Nag-
ios XI I alluded to some of the complaints voiced by adherents
of, or dare I say converts to, commercial monitoring systems. In
that article I introduced Nagios XI and described its architec-
ture—all the ways that it was and was not Nagios. In my second
article on XI, I covered the new auto-discovery functionality and
configuration wizards, both of which put an end to manual Nag-
ios configuration, a favorite topic of the anti-Nagios … heathens.
In this, my third and final Nagios XI article, I’m going to quell
the flames of that debate a little more by directly addressing the
rest of the complaints that seem to be driving admins away from
Nagios and toward commercial monitoring solutions.

Nagios Is Ugly Because It Doesn’t Have Pretty
Graphs
With Nagios core, the admin has to enable performance data
processing in the nagios.cfg and then grab some external
software to parse the performance data output from Nagios,
and shove it all into RRDs. The two most popular choices are
NagiosGraph [7] and PNP4Nagios [8], both of which I’ve written
about in the past.

In XI, however, PNP4Nagios is integrated out of the box, and
definitions exist for all included plugins. This means that with-
out any additional configuration whatsoever you get time series
data for every service you configure. The RRDtool graphs are so
well integrated into the new XI user interface that the uniniti-
ated user would never guess PNP or RRDtool were community-
sourced add-ons, so you get a snazzy UI without losing any of the
power and flexibility that these community-driven development
efforts provide.

In addition to the RRDtool graphs, small bar-graph visualiza-
tions for metrics collected by the Nagios Core daemon, as well as
remote execution tools such as NRPE, are sprinkled throughout

the interface. These do a great job of conveying capacity plan-
ning info at a glance, as well as giving the UI a very polished look.

NagVis, a tool for overlaying status data from Nagios over graph-
ics (e.g., network diagrams or geographical maps), is installed
and available in the “Maps” section of the “Home” view, and set-
ting up your own NagVis diagrams couldn’t be easier.

But wait, that’s not all; rounding out the time series visualiza-
tion is a Graph Explorer tool, which allows you to draw among
other things, ad hoc time series and “stacked” time series graphs.
The Graph Explorer uses a commercial JavaScript library from
Highcharts.com and looks quite elegant. The data comes from
the RRDs resident on the Nagios server via rrdtool fetch, and is
provided to the end-users’ browser to compute the graph locally.
This saves the server’s CPU and provides a snappy, feature-rich
data visualization, allowing you to scale the graph by dragging
to select a range, and providing pop-up numerical values when
you mouse over any data areas. The “stacked” time series graphs
include time-shifted historical data, so you can easily compare
today’s data to that of yesterday etc.

The Nagios UI Sucks Because You Can’t Extend It
The Nagios Core UI is implemented as a series of CGIs writ-
ten in C, and hasn’t had a major overhaul in years. It is often
maligned for its “outdated” design, and was one of the central
points of contention in the Nagios community that gave birth to
the fork that became Ichinga. Several free replacement UIs are
available from the community, the most popular of which are
MK_Multisite [9] and thruk [10].

XI, by comparison, comes with a wholly new and redesigned
PHP-based user interface. The UI as a whole is highly modular,
incorporating add-on components to implement extra features.
This enables the XI developers to react quickly to the needs of
the user community by adding features to the UI as needed or
even custom developing features for larger end-users with spe-
cial needs. A notable example is the “Operations Screen,” which
is intended to be displayed on a dedicated monitor in a network
operations center. In addition to this and other single-page sum-
maries, custom views can be configured to rotate between pages
with more detailed information on timed intervals.

Another component that implements a feature for which the core
community has been begging for years is the “Mass Acknowledg-
ment Component.” This allows an admin to schedule downtime
and acknowledge problems for groups of hosts and services. I
know more than one sysadmin who would purchase XI for this
feature alone.

Nagios-Generated Reports Look Boring
Nagios Core is capable of generating usage and availability
reports by way of the “Reporting” section off the left nav. These

www.usenix.org	   A P R I L 20 13  VO L . 3 8 N O. 2  41

COLUMNS
iVoyeur

reports are sort of difficult to build, export, and link to, and
they’re basically just spreadsheets. Fine for you and me, but not
something that would impress the suits.

The “Reporting” tab in XI by comparison shows some inter-
esting data visualization techniques from the Neoformix
data-visualization field. Components that implement heatmaps,
force directed graphs, and stream graphs have been added to the
classic reporting options. Several shiny new implementations of
the core reports are also provided, each of which I find gener-
ally cleaner than their legacy counterparts and more likely to
impress the wearers of neckties and high-heels in our lives. The
new reports may be exported in CSV and PDF formats with the
click of a button. The button, which links to a predictable URL,
makes it possible for us shorts and t-shirt wearers to grab the
reports automatically with tools like curl and wget.

Nagios Can Only Model Hosts and Services
Nagios Core tracks hosts and the services running on those
hosts. Any larger sort of entity composed of groups of hosts,
or services from groups of hosts is more difficult to model,
though there are add-ons like check_mk that make this sort
of thing possible.

Nagios XI, on the other hand, contains wrapper logic for group-
ing individual services together into higher level entities called
business processes. The intent here is to implement what The
Gardiner Group calls “BAM,” or “Business Application Moni-
toring.” BAM attempts to provide real-time status for critical
business entities like a sales catalog Web site, or corporate email.
Nagios XI implements BAM by breaking a high-level concept
like “corporate email” into its requisite pieces— mail transfer
agents (MTAs), mail exchangers (MXs), groupware systems,
and databases—and then quantifying the relative importance
of each of the services that make up those pieces as well as
describing dependency relationships between them.

XI business process groups contain services that are said to be
“essential” or “non-essential.” A database service in our example
might be considered essential, while the SMTP port on a single
mail exchanger might be “non-essential” (because they are
usually redundant, and even if they go down, the mail will queue
somewhere else). When any essential service or the combina-
tion of all non-essential services goes critical, the XI business
process logic registers this as a “problem.”

Each business process group contains critical and warning
thresholds that depend on the number of problems that are
occurring in the group. In our example, we might imagine two

business process groups, one for SMTP-speakers (MXs and
MTAs) and one for SQL-speakers (groupware systems and DBs).
If the latter group registers a single problem, because a database
is down, that might throw the whole group into a warning state.

Business process groups can contain other nested business
process groups and so on. Our top-level entity, “corporate email,”
is therefore just a business process group that contains the
two groups described above. It is configured just like the other
two groups such that a single “problem” in any of the nested
groups causes it to go into a warning state. Finally, notification
commands can be assigned on each business process group in
the same way they are assigned to individual host and service
events. Additionally, visualization widgets exist for the top-level
groups. These can be added to any dashboard or view and allow
the user to drill down into the groups to see what services or sub-
groups they contain.

I hope you’ve enjoyed this series on Nagios XI as much as I’ve
enjoyed writing it. If you’re in a corporate environment, or find
yourself in want of a turn-key commercial systems monitoring
solution, I can highly recommend Nagios XI.

Take it easy.

References
[1] The Cult of vi: http://6thstreetradio.org/~davek/vi.html.

[2] The Church of Emacs: http://www.emacswiki.org/emacs/
ChurchOfEmacs.

[3] Harry Potter is the Devil: http://www.youtube.com/
watch?v=RSwZJ55g80Q.

[4] Maxwell’s demon of thermodynamics: http://
en.wikipedia.org/wiki/Maxwell%27s_demon.

[5] Magic smoke: http://www.outpost9.com/reference/
jargon/jargon_28.html#TAG1095.

[6] ESR’s “The Cathedral and the Bazaar”: http://www.catb
.org/esr/writings/homesteading/.

[7] NagiosGraph: http://nagiosgraph.sourceforge.net.

[8] PNP4Nagios: http://www.pnp4nagios.org.

[9] MK_Multisite: http://mathias-kettner.de/checkmk
_multisite.html.

[10] Thruk: http://www.thruk.org.

