
38    D ece m b er 20 13  Vo l . 3 8 N o. 6 	 www.usenix.org

Using SEC
D a v i d L a n g

David Lang is a Staff IT Engineer
at Intuit, where he has spent
more than a decade working
in the Security Department
for the Banking Division. He

was introduced to Linux in 1993 and has been
making his living with Linux since 1996. He
is an Amateur Extra Class Radio Operator
and served on the communications staff of
the Civil Air Patrol California Wing, where his
duties included managing the statewide digital
wireless network. He was awarded the 2012
Chuck Yerkes award for his participation on
various open source mailing lists.
david@lang.hm

A s you build your enterprise logging infrastructure (as discussed in
the prior articles in this series [1]), one of the most valuable things
that you can do is to have something watch them and generate alerts

when things go wrong. There are a lot of tools out there that can be used for
this. One good, free tool is Simple Event Correlator (SEC) [2]. In this article, I
will provide an introduction to SEC, how to use it, and the capabilities that it
provides. In a future article, I will go into detail about how to tune your SEC
installation to be able to handle high volumes of logs.

SEC can read log files directly on the local system, but in the context of an enterprise logging
infrastructure, this is seldom the right thing to do.

Instead, because you have a consolidated feed of all your logs, you should run one or more
instances of SEC on a central analysis farm server where it can see the logs from all your
different systems. This allows you to create alerts for things that happen across multiple
servers. For example, you don’t want to alert on one failed login, but one failed login to each
of 400 servers is something that you do want to be alerted about. Additionally, there is a lot
of value in keeping your configuration all in one place so that the same rules will be applied
across all systems.

Of course, with advantages come disadvantages. The fact that you see the logs from all your
systems means that your alerts will fire no matter what environment your systems are in.
You probably don’t really want a wake-up call at 3 a.m. because a Dev or QA system had a
problem, whereas you would want such a call if it was a production system. This is why the
enterprise logging architecture defined a way to add metadata to the log messages. Among
other benefits, this metadata provides your alerting farm more information than just what is
in the log messages when deciding whether it should generate an alert.

The best way to feed log events into SEC is to make sure you are using SEC 2.7.4 or newer and
then use the omprog output of rsyslog to have rsyslog start SEC (restarting it, if needed).

With rsyslog 7, this would be done with configuration lines like:

Module (load=”omprog”)

action(type=”omprog” binary=”/usr/sbin/sec --input=- --initevents

 --notail –conf=/path/to/conf” template=”RSYSLOG_TraditionalFileFormat”)

With older versions, the configuration would be something like:

$ModLoad omprog

$ActionOMProgBinary /usr/local/bin/sec.sh

. :omprog:

and you would have to define the script /usr/local/bin/sec.sh to be something like:

#!/bin/sh

/usr/sbin/sec --input=- --initevents --notail –conf=/path/to/conf

www.usenix.org	   D ece m b er 20 13  Vo l . 3 8 N o. 6  39

SYSADMIN
Using SEC

Understanding the SEC Config File
Sample Rule
SEC configuration consists of multiple rule definitions, along
the lines of:

type=single

ptype=regexp

pattern= (\S+) sshd\[\d+\]: Accepted.*for (\S+) from (\S+) \

port (\d+)\s

desc=ssh login to $1 from $3 for user $2

action=write - $2 logged in to $1 from $3 port $4

This rule would look for a line like this:

Sep 16 17:46:47 spirit sshd[12307]: Accepted password for rik from

		 204.176.22.9 port 59926 ssh2

And when it is found, would generate an alert to stdout that said:

rik logged in from spirit IP 204.176.22.9 port 59926

Notes on syntax:

◆◆ The order of the keyword=value clauses within a rule does not
matter.

◆◆ Keywords are case sensitive (unless otherwise specified in the
man pages).

◆◆ Lines can be continued by ending them with a \.

◆◆ Rules are separated by blank lines.

◆◆ Comment lines start with #, because comment lines are treated
by SEC as if they were blank; comments cannot appear in the
middle of a rule but must be between rules.

Many of the values that you are providing are sensitive to case
and whitespace. For example, the pattern provided in the code
above is looking for a space ahead of the hostname.

Type
There are many different types of matches that SEC has built-in:

SINGLE

	 If a match is found, take action immediately.

SUPPRESS

	 Ignore anything that matches.

CALENDAR

	 Cron type rule to take action at specific times.

SINGLEWITHSUPPRESS

	 If a match is found, take action immediately and
	 suppress additional alerts for a time.

PAIR

	 Watch for pairs of log entries and take one action when
	 the first entry arrives, and a second if the second entry
	 arrives in time.

PAIRWITHWINDOW

	 Watch for pairs of log entries, take one action if the
	 second event arrives in time, and take a different
	 action if it does not. Unlike Pair, no action is taken
	 when the first entry arrives; an action is only taken
	 when the second entry arrives or the timeout hits.

SINGLEWITHTHRESHOLD

	 Take action if there are X matches in Y time.

SINGLEWITH2THRESHOLDS

	 If there are more than X matches in Y time, take one set
	 of actions, and then wait until there are fewer than X2
	 actions in Y2 time and take another set of actions—i.e.,
	 send a notification when a problem happens (too
	 many messages) and a second notification when it
	 clears up (the problem messages disappear).

EVENTGROUP

	 This rule is a generalization of the SingleWithThresh
	 old rule; instead of counting and thresholding one
	 event type, this rule is able to track unlimited number
	 of different events types in a common window (e.g.,
	 generate an alarm if ten firewall events and five IDS
	 events have been seen for the same IP address during
	 one minute).

SINGLEWITHSCRIPT

	 If a match is found, run a script and take one of two
	 actions depending on whether the script returns
	 success or not.

JUMP

	 If a match is found, process one or more other config
	 files against this event.

Ptype
For each rule, you must tell SEC which of the many possible pat-
tern types this rule is using. The available pattern types are:

1.	 RegExp: Perl regular expression

This pattern type can set variables based on match terms; items
enclosed with () in the regexp become $# variables for the rest of
the rule. So the sample rule example sets four variables:

40    D ece m b er 20 13  Vo l . 3 8 N o. 6 	 www.usenix.org

SYSADMIN
Using SEC

pattern= (\S+) sshd\[\d+\]: Accepted.*for (\S+) from (\S+) port

(\d+)\s

Sep 16 17:46:47 spirit sshd[12307]: Accepted password for rik from

	 204.176.22.9 port 59926 ssh2

 $1 hostname (spirit),

 $2 username (rik),

 $3 source IP (204.176.22.9),

 $4 port number (59962).

Plus the default $0, which refers to the entire line.

2.	 SubStr: Substring

Substrings are simple text matches, have no special characters
like a regular expression, and don’t return any values ($1, $2...).
They are much faster to process than a regexp.

3.	 PerlFunc: Perl function

This executes a Perl function and match if the function returns
true and is an extremely powerful capability that I will talk
about more in a later article.

This pattern type can also set variables. The Perl snippet
can return a list, and the elements of that list become the $#
variables.

4.	 Cached: uses the results of a prior rule match.

5.	 Tvalue: either matches everything (TRUE) or matches nothing
(FALSE).

Cached and Tvalue are normally combined with context condi-
tions, which are described below.

Each of these pattern types will have a negated version (e.g.,
NregExp, NsubStr, etc.).

Pattern
Most rules require one (or more) pattern lines, and the syntax of
the pattern is defined by the ptype defined for the rules.

Desc
Desc fields are critical to understand when configuring SEC.
They seem simple (a description of the match), but they play a
critical role when doing anything more than a single match.

Proper use of the desc field allows one rule to run many event
correlations in parallel and track the state of the correlations
independently. Desc defines a “scope” for the correlation state.

When SEC is evaluating any type that has to look at more than
one log entry, SEC considers the desc field to be part of the rule.
This means that if the desc field evaluates to a different value
for the log event, the scope is different and progress towards
generating an alert (or suppressing events after an alert has been

generated) will be tracked independently of log events that result
in the desc field evaluating to a different value.

So if we were to take the sample rule from above and change it
to a SingleWithSuppress rule (we don’t want alerts every time
someone logs in), the rule would become:

type=singlewithsuppress

ptype=regexp

pattern= (\S+) sshd\[\d+\]: Accepted.*for (\S+) from (\S+) \

port (\d+)\s

desc=ssh login to $1 from $3 for user $2

action=write - $2 logged in to $1 from $3 port $4

window=60

With this rule, we would only get one alert per minute for the
same user logging in to one server from another server.

But if we wanted to change this alert so we only got one alert per
minute about the user logging in, no matter what server the user
logged in to or where the user came from, we could change the
desc field to:

desc=ssh login for user $2

If we wanted to suppress messages only if the user is logging in
from the same source, we could change it to:

desc=ssh login from $3 for user $2

Note that SEC doesn’t actually care what this text is, so it would be
just as valid as far as SEC is concerned to have the desc field be:

desc=$3 $2

But it is much nicer to the humans who have to read the file if
you make the field more descriptive. SEC combines the desc field
with the rule number, so if you have multiple rules that produce
the same desc string, SEC will still keep them straight.

Action
An action is what SEC should do when it finds some condition.
A single rule can invoke many different actions, semicolon sepa-
rated. SEC supports many different actions in several different
categories. The more important ones to understand include out-
put actions to let you write to a file, a TCP, UDP, or UNIX socket,
or execute a script and pass data to stdin on that script.

These commands all have the form:

action=<action> <destination> <string>

Especially notable are the udgram and spawn actions.

The udgram action lets you send a message to a UNIX socket
like /dev/log, which is a great way to have SEC generate feedback
into the logging system that can be acted on by other analysis
engines. In an enterprise environment, this is also the best way

www.usenix.org	   D ece m b er 20 13  Vo l . 3 8 N o. 6  41

SYSADMIN
Using SEC

to generate new events for SEC to process because it will work
across multiple instances of SEC, and the event will be visible to
all your different analysis farms:

action=udgram /dev/log <30>sec-alert: alert text

Note that “<30>” is the over-the-wire representation of priority:
facility (3 daemon) <<3 + severity (6 info) [3].

The spawn action runs an external program and reads any out-
put from that program as additional log events to analyze.

Context actions let you create, delete, or redefine (set) a
context. There are also actions to manipulate and output the list
of strings associated with a context (including add, prepend,

report, pop, shift, copy).

And, finally, there are actions to set variables. Because it is pos-
sible to set a variable to be the output of Perl code, and that Perl
code is allowed to have side effects, these actions turn out to be
the most powerful.

Additional Important Rule Options
Continue
By default, SEC stops processing a log entry the first time a
rule matches that entry. Continue tells SEC whether it should
continue processing rules if this rule matches. The default is
DontCont, which stops processing rules as soon as one matches
the event being processed. By adding a line to the rule that says:

continue=takenext

SEC will continue processing the rules for the current log entry.

If you wanted to use the different desc examples together—for
example, alerting if one user is logging in too many times, or if
one machine has too many logins to it—you would need to make
sure that the earlier rules all include continue=takenext or SEC
will never get to the later rules.

Contexts
Contexts (and the desc field described earlier) are the heart of
SEC and are what makes it more than simply a fancy regexp
engine. Whereas the desc field lets one rule run many event
correlation operations simultaneously, and thus act as if it uses
many rules, contexts allow you to stitch multiple rules together.

Contexts have four properties:

◆◆ Existence—manipulated by the create, delete, obsolete actions

◆◆ Defined lifetime—defined at creation or reset by the set action

◆◆ Storage—manipulated by the add, . . . actions

◆◆ Expiration action—again set during creation or by using the set
action and can be used for a number of different things:

◆◆ Controlling the actions of other rules by testing to see if a con-
text exists. This allows you to dynamically switch rules on and
off by checking for combinations of one or more contexts.

◆◆ Storing events and other strings via the add, . . . actions. The
stored information can then be reported using the report action.

◆◆ Scheduling actions to occur in the future by setting an expire
action and a lifetime in seconds.

Contexts are created and manipulated by the action section, but
are tested by adding a context= clause to your rule

For example, if you want to alert if you see logs foo, bar, and baz
all happen within one minute from the same machine, you could
create the rule file:

type=single

ptype=regexp

pattern=^.{16}(\S+) .*foo

continue=takenext

action=create foo_$1 60

type=single

ptype=regexp

pattern=^.{16}(\S+) .*bar

continue=takenext

action=create bar_$1 60

type=single

ptype=regexp

pattern=^.{16}(\S+) .*baz

continue=takenext

action=create baz_$1 60

type=single

ptype=regexp

pattern=^.{16}(\S+)

context=foo_$1 && bar_$1 && baz_$1

continue=takenext

action=write – warning foo bar baz on $1; \

 delete foo_$1; delete bar_$1; delete baz_$1

Note that this set of tests works even if the logs arrive in a differ-
ent order than you expected.

Executing Perl code as part of the context test is also possible.
When combined with cached pattern types, this allows for
specific and fast rule evaluation.

Contexts allow you to combine multiple rules in one alerting
decision. You can alert only if several different conditions are
true by having one rule for each condition you are interested in
(each one setting a context), and then another rule to detect that
all of the other criteria have been met.

42    D ece m b er 20 13  Vo l . 3 8 N o. 6 	 www.usenix.org

SYSADMIN
Using SEC

The most common use of Contexts is to set a flag (with a time-
out) so that other rules can know that a particular condition has
taken place.

Another use for Contexts is to alert when something stops hap-
pening. For example, if you have your systems running “vmstat
60 |logger -t vmstat”, they will log a vmstat output line every
minute. You can then use a rule similar to:

type=single

ptype=regexp

pattern= (\S+) vmstat:

desc=vmstat_$1

action=create vmstat_heartbeat_$1 180 (shellcmd notify.sh $1)

to generate a notification whenever a system ($1) stops gener-
ating a log message. It does this by creating a context that will
expire in three minutes, and if the context expires, it sends a
notification. If another vmstat message arrives from that sys-
tem, SEC resets the context to expire three minutes from when
that message arrived.

The ability to associate a list of strings with a context allows you
to create a context when you see the first event that makes you
suspicious, add all log events as strings to the context, so that
when the context expires (or some other condition happens), you
can make all of the logs that occurred during this period be part
of the alert that you send out.

Internal Events
When started with –initevents (as in the example of how to start
SEC from rsyslog), SEC generates internal events as it is run-
ning; this allows you to create actions that only take place once
when SEC is started, restarted, shutdown, etc. For example, if
you want a log entry every time that SEC is started or restarted,
you could use a rule like:

type=single

ptype=regexp

pattern=(SEC_STARTUP|SEC_RESTART)

context=SEC_INTERNAL_EVENT

desc=Init counters with 0

action=udgram /dev/log <30> sec-status: SEC initialized

Using Perl in SEC
The ability to use snippets of Perl in your SEC rules is one of the
things that makes SEC so incredibly powerful. SEC runs your
Perl snippets in a different namespace than SEC itself, so your
Perl snippets are not going to conflict or interfere with the SEC
internals, although it is possible to get access to the SEC internal
variables if you really need to.

As an example of the capabilities that this provides, you could
extend the sample rule above to produce daily ssh login reports
by changing the action in the sample rule above to:

action=write - $2 logged in to $1 from $3 port $4; \

 eval %o ($ssh_summary{user}{$2}{count}++; \

 $ssh_summary{total_sessions}++;)

SEC doesn’t actually have a command only to execute Perl code,
but it has actions that allow you to run any Perl code and put the
output of that code in a variable. In this case we put the output of
the Perl code into the variable %o, but we never use it. The exec
action compiles the code each time; there is a similar action lcall
that compiles the code once at startup. This is faster, and it can
avoid the need to escape Perl variables.

Add a rule to initialize the variables at startup (and restart).

type=single

ptype=regexp

pattern=(SEC_STARTUP|SEC_RESTART)

context=SEC_INTERNAL_EVENT

desc=Init counters with 0

action=lcall %o ->(sub { %ssh_summary=(); })

note that if exec was used instead of lcall,

the prior line would need to escape the % and would be:

action=exec %o (%%ssh_summary=();)

Then add a rule to output the stats daily and reset them.

type=calendar

time=0 0 * * *

desc=output daily stats

action=lcall %o -> (sub { $ssh_summary{total_sessions}; }); \

 udgram /dev/log <30>sec-summary: There were %o ssh sessions

today; \

 lcall %n -> (sub { my($ret); \

 foreach (keys %{$ssh_summary{user}}) { \

 $ret .= “$_ = $ssh_summary{user}{$_}{count} “; } \

 $ssh_summary{total_sessions} = 0; return $ret; }); \

 if %n (udgram /dev/log <30>sec-summary: Number of SSH \

sessions for each user: %n)

Another good use of Perl is to load a table at startup, and then
test it during the rules.

For example, if you create a file that contains a list of your pro-
duction server names, and then create a startup rule like:

type=single

ptype=regexp

pattern=(SEC_STARTUP|SEC_RESTART)

context=SEC_INTERNAL_EVENT

desc=Load Production Server Table

action=eval %o (%%prodservers=();open(infile, \

”</etc/prodservers.txt”); \

www.usenix.org	   D ece m b er 20 13  Vo l . 3 8 N o. 6  43

SYSADMIN
Using SEC

 while <infile> {chomp; $prodservers{$_}=1; }; close(infile))

you can then add a context test to our original example rule to
only alert if the log is from a production server.

context= =(exists $prodservers{$1})

Similar to the exec command, this compiles the code on each run
(and requires escaping % characters). There is the equivalent to
lcall that would look like:

context= $1 -> (sub { exists $prodservers{$_[0]} })

You can have SEC reload the table on demand by adding a rule like:

type=single

ptype=regexp

pattern=SEC reload production server table

desc=Reload Production Server Table

action=eval %o (%%prodservers=();open(infile, \

”</etc/prodservers.txt”); \

 while <infile> {chomp; $prodservers{$_}=1; }; close(infile))

Note that you probably want to have additional restrictions so
that the reload can only be generated by logs from a specific set
of servers.

Caching Match Results
When you have a number of tests that you want to do with a
single log event, doing the same regexp repeatedly is inefficient.

Using our example, let’s say you want to do multiple alerts on ssh
logins. Instead of each of the rules needing to rerun the regexp
against the log line, you could add the following line to the origi-
nal example rule:

varmap=ssh; line=0; server=1; user=2;source =3; port=4

Then you could create a second rule such as:

type=singlewiththreshold

ptype=cached

pattern=ssh

desc=lots of logins for user $+{user}

action=write - $+{user} logged in to more than 5 servers in one

minute

window=60

thresh=5

continue=takenext

With the use of Perl in the context, you could configure this to
only fire if the user has logged in to more than ten servers all day
(to avoid getting alerts when users arrive in the morning and log
in to a bunch of places to start their day) by adding a line:

context=ssh :> (sub { \

 return $ssh_summary{user}{$_[0]->{user}}{count} > 10})

Debugging
Debugging alerting systems is always an interesting exercise.
You need to be able to generate events to trigger the rules, but
when they don’t fire as expected, you need to be able to figure out
what the internal state of your alerting engine is. SEC provides
this option by way of dump files. If you start SEC with the option
--dump=/path/to/dumpfile, you can send it the signal USR1,
and if the dump file does not already exist, SEC will dump its
internal state. This includes performance stats, how many
matches there have been for each rule, the last several lines that
it has processed, and information about every context that it is
tracking.

Another approach to debugging is to run SEC from the command
line with it reading from stdin or a file. SEC generates a lot of
output as it processes each message, telling you what it does each
step of the way; however, the types of problems that are the hard-
est to troubleshoot tend to involve timing, which means that you
can’t just use a test file. The timing in SEC is based on when SEC
sees the log entry, not any timestamp that may appear in the log
entry. You are better off generating the input to SEC with a script
so that you have a repeatable test that generates the correct mes-
sages with the right timing, either echo+sleep or logger+sleep if
you want to test any filtering in rsyslog as well.

Conclusion
This is a brief overview of the capabilities of SEC, and there are
a lot of nuances and other capabilities that I did not go into. With
the different test types, contexts, desc fields, alerting scripts, and
embedded Perl snippets, there is little that SEC cannot do.

SEC does take some training and expertise to master and
configure for your environment, but any serious alerting engine
that you use is going to require customization to your needs.
The biggest problem with SEC is that there is not a good pool of
examples available for people to work from, but the users mailing
list [4] is extremely responsive to requests.

References
[1] David Lang, Enterprise Logging: https://www.usenix.
org/publications/login/august-2013-volume-38-num-
ber-4/enterprise-logging and https://www.usenix.org/
publications/login/october-2013-volume-38-number-5/
log-filtering-rsyslog.

[2] http://simple-evcorr.sourceforge.net/.

[3] http://en.wikipedia.org/wiki/Syslog.

[4] https://lists.sourceforge.net/lists/listinfo/simple-evcorr
-users/.

