
44    AU G U S T 20 13  VO L . 3 8 N O. 4 	 www.usenix.org

Arrakis: The Operating System as
Control Plane
S I M O N P E T E R A N D T H O M A S A N D E R S O N

Simon Peter is a post-doctoral
research associate at the
University of Washington,
where his research focus is
on operating systems and

networks. Simon holds a Ph.D. in Computer
Science from ETH Zurich, Switzerland, and is a
founding member of the Barrelfish multi-core
operating system research project. Simon has
worked on many OS-related topics, including
multi-core scheduling, distributed file systems,
and distributed tracing, and contributes to
various OS projects, including the Linux
kernel, the GRUB2 boot loader, and the Debian
distribution. simpeter@cs.washington.edu

Thomas Anderson is the
Robert E. Dinning Professor
of Computer Science and
Engineering at the University
of Washington. Professor

Anderson is an ACM Fellow, and he has
won the IEEE Koji Kobayashi Computers and
Communications Award, the ACM SIGOPS
Mark Weiser Award, the IEEE Communications
Society William R. Bennett Prize, the NSF
Presidential Faculty Fellowship, and the Alfred
P. Sloan Research Fellowship.
tom@cs.washington.edu

The recent trend toward hardware virtualization enables a new
approach to the design of operating systems: instead of the operating
system mediating access to the hardware, applications run directly

on top of virtualized I/O devices, where the OS kernel provides only control
plane services. This new division of labor is transparent to the application
developer, but allows applications to offer better performance, security, and
extensibility than was previously possible. After explaining the need for such
an operating system design, we discuss the hardware and software chal-
lenges to realizing it and propose an implementation—Arrakis.

Consider a Web application, where one part executes within a Web service and another runs
on the machine of an end user. On the service side it is important for operations to happen as
efficiently as possible. Short response times are important to keeping users happy with the
provided service, and if the application is executing in the cloud, the operator pays for the
resources consumed. Users, on the other end, want to be as safe as possible from potentially
buggy or malicious code that is now downloaded simply when they go to a Web page.

Unfortunately, today’s operating systems are not designed to handle either of these cases
efficiently. On the server side, the Web application might be created using multiple compo-
nents, such as a MySQL database, an Apache Web server, and a Python language runtime,
executing on top of an operating system like Linux. Figure 1 shows such an architecture.
For every packet we handle on the network or database entry we read from the disk, we must
invoke the Linux kernel and go through the various mechanisms it provides. This involves
checking access permissions on system calls, data copies between user and kernel space,
synchronization delays in shared OS services, and queues in device drivers to facilitate
hardware multiplexing. Furthermore, hardware is typically virtualized in the cloud, and
virtualization often requires another layer of multiplexing using another set of device drivers
in the virtual machine monitor (VMM). Only after that is the I/O operation forwarded to the
real hardware. As I/O performance keeps accelerating at a faster pace than single-core CPU
speeds, this kind of interposition skews the I/O bottleneck to the operating system, which is
mediating each application I/O operation in order to safely multiplex the hardware.

On the end-user side, we want fine-grained sandboxes to protect us from potentially harmful
surprises from remote code of untrusted vendors, such as bugs and security holes. Systems
such as Native Client (NaCl [6]) go to great lengths to provide a secure execution environ-
ment, while allowing the use of shared browser services, like the JavaScript runtime. Their
task would be much simpler with the right level of hardware and OS support.

Driven by the commercial importance of cloud computing, hardware vendors have started
to offer devices with virtualization features that can bypass the virtual machine monitor for
many common guest OS operations. Among these are CPU virtualization, which has been
around for several years, and I/O virtualization, which has entered the market recently. For
example, an IOMMU makes device programming from a guest operating system safe, while
Single-Root I/O Virtualization (SR-IOV) allows devices to do their own multiplexing and
virtualization. Which hardware features are needed to improve the performance of our Web
application beyond just bypassing the VMM?

www.usenix.org	   AU G U S T 20 13  VO L . 3 8 N O. 4  45

SYSTEMS
Arrakis: The Operating System as Control Plane

Hardware Support for User-Level Operating
Systems
An inspiration for this work is the recent development of virtu-
alizable network interfaces, such as the Intel X520 10 Gigabit
Ethernet controller. These interfaces provide a separate pool of
packet buffer descriptors for each virtual machine. The network
interface demultiplexes incoming packets and delivers them
into the appropriate virtual memory location based on the buffer
descriptors set up by the guest operating system. Of course, the
VMM still specifies which guest VMs are assigned to which
virtual network device. Once the setup is done, however, the data
path never touches the VMM. We would like to be able to demul-
tiplex packets directly to applications, based on IP addresses and
port numbers. For this to work, the network device needs to be
more sophisticated, but Moore’s Law favors hardware complex-
ity that delivers better application performance, so such features
are likely to be added in the future.

Entering the market now are hard disk controllers that allow
hard disk partitions to be imported directly as virtual disks to
guest operating systems. What we need is something more: the
ability to give any application direct access to its own virtual
disk blocks from user space. Unlike a fixed disk partition,
applications could request the kernel to extend or shrink their
allocation, as they are able to do for main memory today. The
disk device maps the virtual disk block number to the physical
location. Flash wear leveling and bad block remapping already
support this type of virtualization. As with the network inter-
face, the disk hardware would then read and write disk data
directly to application memory.

An interesting research question we are investigating is whether
we can efficiently simulate this model on top of existing hard-
ware. The idea is to create a large number of disk partitions,
which are then allocated as needed to different applications.
Application data is spread across different partitions, but the
application library synthesizes these partitions into a logical
whole seen by the higher level code.

Power management can also be virtualized [4]. At the applica-
tion level, knowing which devices need to be powered on and

which can be put into low-power mode is easier. Applications
are likely to know more about their present and future usage of a
device, and therefore are capable of smarter power management
than a device driver running within a traditional kernel.

Finally, Intel now supports multiple levels of (multi-level) page
translation (Extended Page Tables [5]). The intent of this is to
support direct read-write access by a guest operating system to
its own page tables, without needing to trap into the hypervisor
to reflect every change into the host kernel shadow page table
seen by hardware. While useful for operating system virtual-
ization, page translation hardware can also be used for a raft
of application-level services, such as transparent, incremental
checkpointing, external paging, user-level page allocation, and
so forth.

Arrakis: The Operating System Is the
Control Plane
What is required on the software side to allow applications
direct hardware I/O? Ideally, we would like a world in which the
operating system kernel is solely responsible for setting up and
controlling data channels to hardware devices and memory. The
hardware delivers data and enforces resource and protection
boundaries on its own. Applications receive the full power of the
unmediated hardware. To make this possible, we partition the
operating system into a data plane and a control plane. This is in
analogy to network routing, where the router OS is responsible
for setting up data flows through the router that can occur with-
out any software mediation.

Figure 2 shows this division in the Arrakis operating system.
In Arrakis, the operating system (control plane) is only respon-
sible for setting up hardware data channels and providing an
interface to applications to allow them to request and relin-
quish access to I/O hardware, CPUs, and memory. Applications
are able to operate directly on the unmediated hardware (data
plane).

Direct hardware access may be made transparent to the applica-
tion developer, as needed. We can link library operating systems
into applications that can provide familiar abstractions and

Figure 1: Application I/O paths for a virtualized Web service. Figure 2: Arrakis I/O architecture

46    AU G U S T 20 13  VO L . 3 8 N O. 4 	 www.usenix.org

SYSTEMS
Arrakis: The Operating System as Control Plane

mechanisms, such as the POSIX system call interface, thread
scheduling, inter-processor communication, virtual memory
management, file systems, and network stacks. These light-
weight library operating systems execute within the same
protection domain as the application.

The most important abstraction we are providing in Arrakis is
that of an application container. An application container is a
protection domain that provides a small interface to the Arrakis
kernel to request the setup and tear down of unmediated chan-
nels to I/O hardware and memory, but otherwise provides the
hardware itself. Figure 3 shows two such application containers.
The Arrakis kernel is solely responsible for providing the mecha-
nisms to allow allocating hardware resources to these contain-
ers, and, to allow applications to communicate, an interface
to share memory, as well as a mechanism for directed context
switches, akin to lightweight remote procedure calls (LRPC [1]),
which facilitates low latency communication on a single core.

Use Cases
A number of applications can benefit from Arrakis’ design,
among them Web applications, databases, cloud computing, and
high-performance computing (HPC) applications. We look back
at Figure 3 and discuss two concrete examples of Web browsers
and cloud applications within this section.

High-Performance Cloud Infrastructure
In Arrakis, we are able to execute the TCP/IP stack and network
card device driver all within the same application and eliminate
any system call protection boundary crossings, packet demulti-
plexing code, and kernel copy in/out operations that are typically
required in a monolithic operating system. What’s more, we can
customize the network stack to better match the requirements
of the Web server, down to the device driver. For example, the
device driver could map packet buffers into the application in
such a way that TCP/IP headers can be pre-fabricated and just
mapped in front of the payload. The application can simply write
the payload into the mapped buffer space. If packet checksumming
is required, it can be offloaded to the network interface card.

A more complex cloud application may include a MySQL database
server in addition to the Web server. The database is a fully trusted
component of the cloud application; however, both MySQL and
Apache ship within their own set of processes. Typically, these
are connected via UNIX domain or TCP/IP sockets that need to
be traversed for every request and the operating system has to
be invoked for each traversal. This introduces overhead due to
the required context switch, copy and access code operations, as
well as OS code to ensure that data passed from one application
to the other does not violate security. Avoiding these overheads
can further reduce round-trip request latencies.

Arrakis allows us to run processes of both servers within the
same protection domain. This eliminates most of the afore-
mentioned overheads. Data can simply be remapped between
applications, without sanity checks, and a context switch would
not involve a journey through the operating system.

Application-Level Sandboxing
Web browsers have evolved into running a myriad of complex,
untrusted Web applications that consist of native and managed
code, such as HTML5 and JavaScript. These applications have
access to low-level hardware and OS features, such as file sys-
tems and devices. Sandboxing this code is important to protect
against security flaws and bugs that threaten system integrity.

In Arrakis, we are able to leverage hardware support for
Extended Page Tables (EPT) to set up different protection
domains within the browser. Each sandbox occupies a different
protected address space within the browser’s application con-
tainer, with shared code and data mapped into all of its address
spaces. This allows for a simple sandboxing implementation
that, consequently, has a smaller attack surface.

Device drivers may be sandboxed as well using this approach.
Furthermore, requesting channels to multiple virtual functions
of the same hardware device from the kernel is possible. This
allows us to replicate device drivers within the Web browser
and run each replica within its own protection domain directly
on these virtual functions multiplexed by the hardware. For
example, we can request a virtual function per Web application
and run the driver replica within that Web application. If a buggy
device driver fails, only the Web application instance that trig-
gered the failure will have to be restarted. The failure will not
impact the rest of the browser environment or, worse, the rest of
the system.

Lightweight Sharing
Providing Arrakis would be relatively easy if applications were
complete silos—we could just run each application in its own
lightweight virtual machine and be done. Our interest is also in
providing the same lightweight sharing between applications
as in a traditional operating system, so the user sees one file

Figure 3: Example application containers containing a browser and a
cloud application

www.usenix.org	   AU G U S T 20 13  VO L . 3 8 N O. 4  47

SYSTEMS
Arrakis: The Operating System as Control Plane

system, not many partitions, and applications are able to share
code and data segments between different processes. How might
this be done?

In Arrakis, an application can directly read and write its file
and directory data to disk, without kernel mediation. File layout
and recovery semantics are up to the application; for example, a
Web browser cache might use a write-anywhere format, since
losing several seconds of data is not important, while others
might use traditional write-ahead logging. In the common case,
most files are used only by the applications that wrote them;
however, we still need to be able to support transparent access
by other applications and system utilities, such as system-wide
keyword search and file backup. How do we design OS services
that efficiently allow the same sharing among multiple applica-
tions as that offered by operating systems that mediate each I/O
operation?

To achieve this, the format of files and directories is independent
of name look up. In Arrakis, we insert a level of indirection, akin
to NFS vnodes. When a file name look up reaches an application-
specific directory or file, the kernel returns a capability associ-
ated with the application handling storage of the corresponding
file. The capability is used to access the file’s contents, by
invoking a file memory mapping interface that is provided by the
storage handling application’s library operating system. This
allows us to share files safely and efficiently among untrusted
applications.

Related Work
The security/performance tradeoffs of monolithic operating
system designs have been of concern several times in the past.
Particularly relevant are Exokernel [3] and the SPIN operating
system [2].

Exokernel tried to eliminate operating system abstractions, and
thus allowed applications to implement their own. Applications
can link library operating systems that contain the abstractions
that fit best with an application’s operation. Note that it was not
possible to set up several protection domains within a library
operating system and thus sandboxing was equally difficult as
in today’s operating systems. Furthermore, to be able to safely
multiplex a single hardware device to multiple library operating
systems, Exokernel had to resort to the use of domain-specific
languages that had to be uploaded into the kernel for proper disk
and network multiplexing.

SPIN allowed uploading application-specific extensions into the
operating system kernel. This way, applications could access the
hardware and OS services more directly and gain a speedup. To
make this safe and protect the rest of the system from poten-
tially buggy or malicious extensions that were executing in
supervisor mode, SPIN required the use of a type safe program-

ming language (Modula-3) for extension development. This
allowed for an extension to be checked against all its accesses
before executing it within the OS kernel, but required the imple-
mentation of all extensions within this language.

Conclusion
Now is the time to take a fresh look at the division of labor
between the operating system, applications, and hardware.
Recent hardware trends are enabling applications to become
miniature operating systems, with direct I/O and virtual mem-
ory access, while safety and resource boundaries are enforced by
the hardware.

We propose a division of the operating system into a control
plane and a data plane that allows applications direct access
to the hardware in the common case. Applications can provide
their own storage, network, process, and memory management
without mediation by the operating system kernel.

We are in the early stages of developing the Arrakis operating
system. Our Web site, http://arrakis.cs.washington.edu/, pro-
vides further information and development status updates.

References
[1] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M.
Levy, “Lightweight Remote Procedure Call,” Proceedings of
the 12th ACM Symposium on Operating Systems Principles,
December 1989, pp. 102-113.

[2] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers, “Exten-
sibility, Safety and Performance in the SPIN Operating Sys-
tem,” Proceedings of the 15th ACM Symposium on Operating
Systems Principles, December 1995, pp. 267-284.

[3] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr., “Exoker-
nel: An Operating System Architecture for Application-Level
Resource Management,” Proceedings of the 15th ACM Sympo-
sium on Operating Systems Principles, December 1995,
pp. 251-266.

[4] R. Nathuji and K. Schwan, “Virtualpower: Coordinated
Power Management in Virtualized Enterprise Systems,”
Proceedings of the 21st ACM Symposium on Operating Sys-
tems Principles, October 2007, pp. 265-278.

[5] Intel 64 and IA-32 Architectures Software Developer’s
Manual, August 2012.

[6] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native Client: A
Sandbox for Portable, Untrusted X86 Native Code,” Commu-
nications of the ACM, vol. 53, no. 1, January 2010, pp. 91-99.

