
A N D R E W H U M E

how’s your OS
these days?
Andrew Hume is a senior researcher at AT&T Labs.
Over the past 10 years or so, he has worked on big
data problems and the cluster infrastructure needed
to support such applications. He believes in end-to-
end checks, and in both the compelling price/per-
formance and utter fallibility of modern PC hard-
ware running UNIX-like operating systems.

andrew@research.att.com

I N 2 0 0 3 I G A V E A K E Y N O T E A D D R E S S
at HotOS IX about the reliability, or lack
thereof, of OSes commonly used to build
computing systems and clusters. I spent
much time detailing examples of aberrant
behavior, some of which were entertaining
(if it didn’t happen to you) and some just
outright perplexing. While certain people,
notably including those who sell software,
understood my points well, I think many
were not quite sure what to make of my
charges.

To be truthful, I was not sure what response I wanted
either. Certainly, I wanted to challenge the (often
smug) complacency of the FREENIX crowd who
believe in the technical superiority of their particular
OS. I put forward the notion that properties that let
you combine individual systems into clusters—for
example, predictable and bounded behavior—used to
be fairly common but nowadays seem less so.

The obvious question is, has anything changed over
the last two years? The answer is clearly yes. Every
release of every OS brings its own new set of “fea-
tures,” or bugs, as we used to call them. For example,
the egregious I/O problems we had with the 2.4 Linux
kernels seem to have gone away with the 2.6 kernels.
Of course, new problems appear; when we are pound-
ing away at writing to SCSI tape (at a massive 5MB/s),
the buffer cache seems to vanish and becomes very
slow to replenish, especially for pages read in nonse-
quential order. Scanning a 100MB gdbm database,
which normally takes 1 or 2 seconds, starts taking
anywhere from 5 to 50 minutes. I understand full well
the consequences of flushing the buffer cache, but
writing to a slow tape seems an inadequate reason.
We find fewer bugs with each release, but the number
is still decidedly nonzero.

I also want to make clear what I mean by “bug” here.
I do not just mean when the OS does something
wrong (more on this below), but when it does a right
thing in an untimely fashion. We saw one example
above, when the time needed to scan a modest data-
base averages 1 to 2 seconds but can take 50 minutes.

So what’s the problem? When we try, as my team
does, to build reliable and/or highly available com-
puting infrastructure out of nodes that are only mod-
estly reliable, it is necessary to detect node failure.
When we execute some work on a node, there is an
associated time limit (called a “lease”) for that work,
and if the lease expires before the work completes, we
assume that the node died and assign the work to

; LO G I N : J U N E 2 0 0 5 H OW ’ S YO U R O S TH E S E DAYS ? 27

28 ; L O G I N : V O L . 3 0 , N O . 3

another node. This allows the general workflow to
continue despite nodes failing—but we now have to
parameterize the leases. If the leases are too short,
there will be wasted work as we re-execute the work
unnecessarily. If the leases are too long, as in the case
of an actual node failure, we’ll spend unnecessary time
waiting for work to finish when it never will.

Another example of a time-related bug is recycling a
server. Recycling a server means halting a service
(which would result in the open port being closed).
On most UNIX-like OSes, one can simply unmount the
bind and exit; almost immediately (in a second or
less), one can re-execute the server process, which will
then be able to bind and proceed on. On all the Lin-
uxen we’ve tried, this just fails, and we end up waiting
a fairly long time before we can restart successfully (we
initially wait 15 seconds, and back off exponentially to
a maximum of 75 seconds). The variance of how long
a wait is required (again, it seems to depend on how
busy the system is) is annoying, and directly increases
service unavailability.

For outright bugs, two examples come to mind. The
first is the weakness of the FreeBSD SCSI system; we
cannot reliably write tapes on our FreeBSD nodes
(although at least we get told about the errors!). Again,
the tape is slow (5MB/s) and should not be an issue,
and we can reliably write them on Linux (on more or
less identical hardware). Although this is annoying, it
turns out reading a tape works just fine, so we’re not
too annoyed.

The other example is perhaps not an OS bug per se,
but rather, I think, a hardware weakness, so common
these days. We configure our PCs with a 3Ware con-
troller plugged into the PCI bus, and all our disks (2–7
per node) plug into the 3Ware. Because our nodes are
typically 1U systems, we need an extender board so
that we can mount the 3Ware controller horizontally. It
turns out that the 3Ware board is overly fussy about
termination and really only operates reliably when
actively terminated, not passively (as is the norm). We
didn’t really care which way it needed to be termi-
nated; what did piss us off was the complete lack of
error detection by everyone involved. No errors were
logged or detected by either drivers or diagnostics. Per-
haps the driver doesn’t see an error, or the hardware
doesn’t have ECC, but this is bad.

The only diagnostic that worked was “copy 2GB to
5GB of files and checksum every copy and verify that
the copies were good.” In many ways, this is an
admirable end-to-end test, but it also always seemed a
very gross test.

Which brings me to my final thought. Many people
have listened to my tales of woe, and the almost uni-
versal response is “Why are you so unlucky?” (because
they not only don’t see these problems, they’ve never
even heard of them before). Certainly, I pound on my
systems and work them hard. But I’m sure I’m not
alone in this (although relatively few people schedule
jobs in batches of 75,000–150,000, or move TBs of files
around a 10 to 12-node cluster). I think the significant
difference is that I check everything I can. All file
movement is md5summed and, where plausible, we
add consistency checks to verify our processing.

For example, we have a distributed logging system
where the logging routine ensures that at least three
systems got the log message. Each system then gener-
ates a file of the recent log messages every five minutes,
and these are collected and coalesced on a central node
into a single file per week. After the coalescing, we
check the result by sorting all the five-minute files into
an “input” pile, sorting all the weekly files we updated
into an “output” pile, and then verifying that the input
pile is a strict subset of the output file. You might think
this a tedious, expensive check of demonstrably cor-
rect code (the shell script that does this is quite sim-
ple). But so far this check has found at least seven bugs
that would have otherwise probably not been found.
This includes not only bugs in the five-minute file gen-
erator, but also rude behavior by the system sort utility
(returning success even though the temp file system
ran out of space), and even by rcp (copying to a full file
system not only returns success but also sets the file’s
length to the right amount, even though it failed ear-
lier on). And thus every time I think about taking out
this apparently redundant test, I think of how the sys-
tem is out to get me, and I leave the test in.

So my standard answer to the question, “Why do you
see so many errors?” is, “I care about the answers and
check that they’re right.” Sometimes I wonder why
more people don’t have the same answer. Don’t you?

