
A D A M T U R O F F

practical Perl

P R O G R A M S T O W R I T E P R O G R A M S

Adam is a consultant who specializes in using Perl to
manage big data. He is a long-time Perl Monger, a
technical editor for The Perl Review, and a frequent
presenter at Perl conferences.

ziggy@panix.com

Testing Web sites can be quite tedious, but
it doesn’t need to be. In this column I de-
scribe how I wrote a few small programs to
generate hundreds or thousands of regres-
sion tests for a Web site.

One of my current projects involves reimplementing a
large, dynamic Web site. Back in the go-go dot-com
days, this kind of project was rather common. The
preferred technique was slash-and-burn: Throw out
all of the old code and implement the new Web site
from scratch using whatever language, library, frame-
work, or platform is popular this week. Along the
way, the Web site would get a facelift and be upgraded
to use the latest and greatest Web design techniques.
The new Web site would look wonderful, garner
praise, and win awards, up until the point that the
cycle repeated, a few short months later.

Thankfully, the Web development scene has settled
down considerably in recent years. Throwing every-
thing out and reimplementing a Web site from scratch
has come to be seen as not only foolish, but in many
cases as not even feasible. The current Web site I am
working with is the result of years of requirements
gathering, design, development, testing, and debug-
ging. It represents a slow evolution to match the
application requirements with the capabilities and
quirks of the Web browsers our customers use.

Throwing out years of work because some popular
new system can generate Web pages “easier” or “bet-
ter” is interesting but ultimately irrelevant. While the
current Web site architecture may be aging and brit-
tle, any new implementation needs to faithfully repro-
duce the HTML interface in use today. Customers
have come to expect the site’s current interface and
behaviors. Gratuitous changes made for the sole ben-
efit of the development team would negatively impact
customers, and that could easily impact the bottom
line. Yet some kind of change is necessary whenever
the current Web site code becomes hard to maintain
and difficult to extend.

Testing to the Rescue

In some respects, this problem seems like the classic
“unstoppable force meets immovable object.” The
existing HTML must be preserved, and the easiest
way to generate the existing HTML is to keep the
existing Web site, however old and brittle it may be.
The only way to move forward is to replace the exist-
ing Web site, but only in a manner that will faithfully
reimplement the existing HTML, bug for bug. Seen
this way, reimplementing this Web site is a software

; LO G I N : A P R I L 2 0 0 5 P R AC TI C A L P E R L 15

16 ; L O G I N : V O L . 3 0 , N O . 2

project like any other, with one additional constraint, which we can check
empirically as we move forward. (Fixing HTML bugs and updating HTML
designs are discussions for another time and place.)

This constraint sounds cumbersome and tedious, and indeed it is. Each dynami-
cally generated HTML page from the new site must be checked against a corre-
sponding page from the old Web site to check that all expected content, layout,
and structure is present, and only that material is present. Repeat this process for
each of the dozens of pages to be tested. Because pages may appear differently
for different users, check each page multiple times, one time for each account to
be tested.

Other factors also require consideration. Like many Web sites today, this site is a
front end for a very large database. The database is constantly being updated, so
a Web page that passed a test yesterday or this morning might fail this afternoon
because the underlying data has changed. But that kind of failure is a “false neg-
ative,” since that is the expected behavior. So tests need to be updated periodi-
cally in order to ignore normal data changes, and focus on the HTML interface
elements that surround that data.

As my friend brian d foy likes to point out, we’re working with computers, and
computers are built for doing boring, repetitive work over and over again. On
this project, I need hundreds of long test scripts in order to make sure that the
new Web site faithfully re-creates the output of the existing one. Rather than
writing those boring, tedious test scripts by hand, I decided to write three inter-
esting programs instead:

n find-links: Finds Web pages on the old site to examine
n build-test: Examines a single Web page on the old site and builds a test script
n MyHTMLAnalysis.pm: A module that analyzes HTML input when building

and running a test script

By running two programs, I can generate a few hundred test scripts in the time it
takes to get a cup of coffee. If the underlying data changes, I can just delete some
tests and rebuild them while I get more coffee.

Test Setup

In order to easily compare old and new Web sites, I needed to spend a little time
building an environment to support this testing activity. I started out with two
identical copies of the Web site checked out from CVS, Subversion, or another
source control system. The two copies of the Web site must be configured iden-
tically and run side by side on two different Web servers running on two differ-
ent ports, or on two different systems. One copy will be the “baseline,” running
the existing code unchanged. The other copy will be the development server,
where all of the changes will be made.

Having access to both versions of the code at all times is important. Whenever a
test failure occurs on the development server, the baseline server should be
checked with the same test script to determine whether the failure is a bug or a
false negative due to normal data changes. If a test failure is in fact a false nega-
tive, the baseline can be reexamined to produce a fresh test to find real bugs in
development.

With the baseline Web server in place, the first task is to find the pages to pro-
file, the task automated by the find-links script. I could have maintained a text
file of links to examine, but it was just as easy to write a program to find links
for me. In the spirit of automating tedious tasks, this program emits a Makefile
fragment that will build the tests.

Below is the find-links script that I used to crawl the baseline site and find all
pages linked from the home page. Of course, each Web site is different, so the

; LO G I N : A P R I L 2 0 0 5 P R AC TI C A L P E R L 17

rules for what to profile will likely vary from site to site. For my project, it was
sufficient to look at the home page and look at any link into the site from the
home page. For other sites, it might be necessary to examine a small, predeter-
mined list of links, to perform an exhaustive traversal of every link in a site, or
something in between. Note that links to other Web sites are ignored, since they
are beyond the scope of what is to be tested here.

#!/usr/bin/perl -w
use strict;
use WWW::Mechanize;
my $usage = "Usage: $0 <baseurl> <urlpath> <testpath> [cookiejar]\n";
my $baseurl = shift(@ARGV);
my $urlpath = shift(@ARGV);
my $testpath = shift(@ARGV);
my $cookies = shift(@ARGV) || "";
die $usage unless $baseurl;
die $usage unless $urlpath;
die $usage unless $testpath;
Specifying a cookie jar is optional
Find URLs
my %seen;
my $number = "000";
my $mech = WWW::Mechanize->new (

cookie_jar => {file => $cookies}
);

my $base = "$baseurl$urlpath";
$mech->get($base);
foreach my $url ($mech->links()) {

Normalize this URL:
convert into an absolute URL
and remove the internal anchor (if present)
$url = $url->url_abs()->as_string();
$url =~ s/#.*$//;
Focus on links within this site, and
make the URL relative to the base
next unless $url =~ s/^$base//;
Test each URL once and only once
next if $seen{$url}++;
Write out another entry in the Makefile
my $file = "$testpath/$number.t";
print "$file:\n\tbuild-test $baseurl $url $cookies > $file\n\n";
$number++;

}

This script is invoked with four parameters: the location of the baseline server
(http://localhost:8080), the URL path to the page to profile (/start), a path to
deposit test scripts, and an optional file containing the cookies to use for user
authentication. The location of the baseline server must be split out from the
URL to process, so that build-test can create a test that assesses either the base-
line or the development server.

By using this program I can create multiple test suites from the baseline Web site
quickly and easily:

$ find-links http://localhost:8080 \
/start ./admin admin.conf > Makefile.admin

$ find-links http://localhost:8080 \
/start ./user user.conf > Makefile.user

$ find-links http://localhost:8080 \
/start ./guest guest.conf > Makefile.guest

...

18 ; L O G I N : V O L . 3 0 , N O . 2

Analyzing HTML

Once find-links has run, the next step requires profiling the baseline server to
build test scripts. Because these scripts will be used to check both the baseline
and the development server, the location of the Web server to test should not be
specified in these test scripts. I have found that the best way to specify which
server to test is to place that information in environment variables, either in a
Makefile or on the command line. Switching or overriding an environment vari-
able makes it quick and easy to check the baseline server to see whether a test
failure on the development server is a true bug or a false negative.

Ideally, the best way to test the output of the development server against the
baseline server is to use a simple string comparison. If the output of the develop-
ment server does not precisely match the expected output, the test fails. In prac-
tice, that level of rigor is simply impractical. If the output from the development
server does not exactly match the output from the baseline server, it could be
because one character changed or because 1000 characters changed. Also, locat-
ing where and how the two pages differ can be difficult, especially when dealing
with very large HTML pages.

Furthermore, there are many textual changes that have no semantic or struc-
tural impact in HTML. The tags below are all equivalent in HTML, but fail a
simple textual comparison:

<img src="button.gif"
width="5" height="10" >

For any meaningful comparison of baseline against development Web servers,
some measure of scanning or parsing HTML output is necessary. If you are pro-
filing an XHTML site or other XML data, you can use any of the many Perl mod-
ules for processing XML to aid your analysis. If not, then regular expressions
and some of the many HTML parsing modules on CPAN can help you along.

To ease HTML profiling, it’s best to put the code to analyze output from the
baseline and development servers into a module used by both the build-test
script and the test scripts it generates. This module contains code to do things
such as find links, images, and JavaScript blocks and produce data structures
that are easy to examine when building and running tests.

Purists will note that this setup adds a measure of uncertainty to the testing
process. Although this is true, pre-processing HTML before testing it helpsto
factor out meaningless differences and focus on the more meaningful changes
between versions. Because HTML is such a troublesome format, using an analy-
sis module provides one central place to catalog all of the differences you con-
sider meaningless in your application.

For example, JavaScript <script> blocks should have a type="text/javascript"
attribute. That attribute may or may not be present. The deprecated
language="javascript" attribute may be present. If neither is present, browsers
will assume that the content of the <script> block will be JavaScript.

Within a JavaScript block, whitespace characters are (mostly) meaningless. If
two JavaScript blocks differ only in indentation, they should be considered iden-
tical. JavaScript blocks can also be wrapped with optional HTML comments. If
the only difference between two such blocks is the presence/absence of HTML
comments, the two blocks should be considered equivalent.

Finally, if two JavaScript blocks really do differ, it doesn’t matter where they dif-
fer, just that they differ. To simplify test output, I find it useful to pre-process

; LO G I N : A P R I L 2 0 0 5 P R AC TI C A L P E R L 19

JavaScript blocks and convert them into MD5 checksums. If two JavaScript
blocks differ after all meaningless differences have been factored out, their
checksums will differ.

Here is the function in my analysis module that cleans up JavaScript blocks for
easy comparison. The analysis sounds complex, but the code is actually rather
straightforward:

package MyHTMLAnalysis;
use MD5;
sub process_javascript {

my $html = shift;
Grab JavaScript code. Ignore attributes on the <script> tag
my @javascript = $html =~ m{<script.*?>(.*?)</script>}sig;
Normalize whitespace
@javascript = map {s/\s+/ /; s/^\s//; s/\s$//; $_} @javascript;
Remove the leading/trailing comments, if found
@javascript = map {s{^<!—\s*(.*?)\s*//\s*—>$}{$1}s; $_} @javascript;
Convert it to MD5 checksums
@javascript = {MD5->hexhash($_)} @javascript;
return @javascript;

}

Analysis functions for other portions of the HTML input are generally simple
and easy to write and test on their own. HTML testing requirements generally
vary from site to site, so be sure to identify what portions of the HTML input
you need to analyze, and what meaningless changes you want to factor out from
your tests.

Building Tests

With an HTML analysis module in place, it was time to build and run the scripts
that would profile the baseline Web site and test the development Web site.

The process of building a test script was pretty simple. Each analysis function
that build-test calls is mirrored with a corresponding call in the test script being
generated. All of the results available to build-test are copied into the test script
as test assertions using Test::More. Here is the portion of build-test that handles
building JavaScript tests:

#!/usr/bin/perl -w
use strict;
use MyHTMLAnalysis;
use WWW::Mechanize;

my $usage = "Usage: $0 <base> <url> [cookie jar]\n";

my $base = shift(@ARGV) or die $usage;
my $url = shift(@ARGV) or die $usage;
my $cookies = shift(@ARGV) || ""; ## Cookies are optional
my $mech = WWW::Mechanize->new (

cookie_jar => {file => $cookies}
);

$mech->get("$base$url");
my $html = $mech->content();
print preamble($url, $cookies);
print test_javascript($html);
##...create more tests
sub preamble {

my $url = shift;
my $cookies = shift;
return <<EOF;

#!/usr/bin/perl -w
use strict;

20 ; L O G I N : V O L . 3 0 , N O . 2

use Test::More qw(no_plan);
use MyHTMLAnalysis;
use WWW::Mechanize;
my \$mech = WWW::Mechanize->new (

cookie_jar => {file => $cookies}
);

\$mech->get("\$ENV{TEST_SERVER}$url");
my \$html = \$mech->content();
my \@data;
EOF
}
sub test_javascript {

my $html = shift;
my @data = MyHTMLAnalysis::process_javascript($html);

my @tests;
push (@tests, q/@data =

MyHTMLAnalysis::process_javascript($html)/);
Test that all of the expected JavaScript blocks match
foreach (@data) {

push (@tests, qq/is(shift(\@data), q{$_});/);
}
Make sure there are no other JavaScript blocks
pushd (@tests, <<EOT);

foreach (@data) {
fail("Unexpected Javascript block: $_");

}
EOT

return join("\n", @tests);
}

The snippet above shows how to test JavaScript blocks in a Web page. The
process can easily be repeated to test more components on a Web page by
adding more analysis functions to the shared analysis module, calling them in
this script, and embedding the results of that analysis into the test scripts
generated.

Note that this program is actually producing a Perl program (a test script), so it
is important to get the quoting correct: Some variables need to be escaped
because they are variables in the test script being generated. Other variables are
unescaped because they are variables in build-test, where the values are being
copied into the test script. The resulting program can be run using standard test-
ing tools like Test::Harness and prove.

Finally, keep in mind that these scripts must be able to examine either the base-
line or the development server. The location of the server to test is expected to
be in the TEST_SERVER environment variable, and that will generally point to
the development server (e.g., http://localhost:8081). When checking for changes
in the database, this value would be reset to point to the baseline server (e.g.,
http://localhost:8080).

Conclusion

Testing Web sites is a notoriously difficult and error-prone task, but with a little
advance planning and analysis, Web site testing can be a breeze. Just write a few
programs to profile your Web site, and let Perl generate your test scripts for you.

