
10	 ; LO G I N : VO L . 35, N O. 1

A lv a C o u c h

configuration
management
phenomenology
Alva Couch is an associate professor of
computer science at Tufts University, where
he and his students study the theory and
practice of network and system administra-
tion. He served as program chair of LISA
’02 and was a recipient of the 2003 SAGE
Professional Service Award for contributions
to the theory of system administration. He
currently serves as Secretary of the USENIX
Board of Directors.

couch@cs.tufts.edu

A q u a n d a r y i n m a p p i n g b e h av i o r t o
configuration is traced, in part, to a philo-
sophical quandary rooted in the relationship
between system administrator and user.

“Talk to the bomb. Teach the bomb
phenomenology.”

—�The captain, in Dark Star: The
Spaced-Out Odyssey

At the climax of the cult science fiction parody
Dark Star [1], a “smart bomb” has decided to
explode while still in the spaceship bay, rather
than exploding on the planet that it is supposed to
destroy. The spaceship crew attempt to “solve” this
problem by engaging the bomb in a deep philo-
sophical discussion of the meaning of life and ex-
ploding; they try to convince the bomb that it need
not explode, because the importance of whether it
explodes or not is subjective and not particularly
significant in the larger picture of things.

This silly discussion somehow reminds me of the
state of the art in configuration management. Tools
act on the configuration as if it were the definitive
representation of behavior and assume that this is
enough for tools to do. Meanwhile, the behavior of
a configuration management solution is monitored
via mechanisms that—again—quietly assume that
configuration defines behavior. But it might not, for
many reasons. In autonomic computing parlance,
the human system administrator is left to “close
the loop” between configuration and behavior, and,
when things go wrong, must rely upon intuition
and experience to “close” this loop manually.

The situation, similar to the situation in Dark Star,
is that the tools allow the environment to “ex-
plode,” humans must intervene, and the apparent
solution, as in Dark Star, is to “teach the tools phe-
nomenology” by giving tools perceptive capabili-
ties by which they can understand the effects of
their actions. What does this mean, and is it even
reasonable? In this article, we explore this question
from several angles.

Beyond Semantics

This article might be considered the second in a
series. In the first article [2], we discussed the se-
mantic wall between high-level and low-level con-
figuration specifications and how difficult it is to
map between high and low levels of abstraction in
a configuration. We commented on the difference
between “specifying configuration” and “specifying
behavior” as a problem of semantics.

; LO G I N : Fe b rua ry 201 0	config u r ation m a n ag em e nt ph e no m e nolog y	 11

Now, two years later, another problem looms on the horizon. Even if we
manage to successfully bridge the gap between levels of configuration ab-
straction, the problem of bridging desired and observed behavior remains.
This is not just a problem of semantics, but a deeper problem with the
assumptions we make and the way we approach both configuration man-
agement and the profession. While the former problem arises from difficul-
ties of meaning, this problem arises from the philosophy that we adopt in
satisfying user needs.

Phenomenology

In a naive sense, “phenomenology” refers to the practice of relying upon
one’s senses to define the nature of the physical world. In like manner, I
refer to phenomenology in system administration as the practice of trust-
ing what one can observe the system actually doing, instead of trusting any
abstract idea one might have of what it is supposed to do. Thus I propose
that “a machine’s identity is what it does,” by contrast with the traditional
configuration management view that “a machine’s identity is how it is con-
figured.” For each configured machine (to paraphrase Sartre), I assert that
“to do is to be,” i.e., machines’ behaviors define their natures. By contrast, a
fundamental tenet of configuration management (attributed to Socrates) is
that “to be is to do,” i.e., machines’ natures define their behaviors.

Although it might seem that I am splitting meaningless philosophical hairs,
there is a world of difference between these definitions that strikes at the
core of the assumptions underlying configuration management as a practice.
We often comfortably and tacitly assume that the way a machine is config-
ured defines its behavior. I beg to differ for a multitude of reasons. The rea-
son that this assumption is false is more than a simple problem of semantics.
Behaviors arise from sources other than the configuration.

Using Phenomenology

Phenomenology is not a new idea for system administrators; we use it every
day. In tuning a configuration or troubleshooting a problem, we engage in
controlled (or perhaps not-so-controlled) experimentation. We are intimately
familiar with many cases in which what something does correlates poorly
with what we think it is and—implicitly—we quietly modify our idea of
what it is, accordingly.

My evidence is, however, that we do not go far enough in believing our
senses. Our behavior is based upon hidden assumptions—deeply embedded
in practice—that influence and sometimes cloud our thinking. One way to
bring those assumptions out into the open is to consider how we philosophi-
cally approach the problem of system administration.

Verification and Validation

There is a subtle difference between what current configuration management
tools do and what we tacitly assume that they do, which is similar to the dif-
ference between “verifying” and “validating” a software product in software
engineering. According to software engineer Barry Boehm, the process of
“verification” answers the question, “Are we building the product right?”
This is the way most configuration management tools work. A configuration
is “verified” if it accords with the system documentation. “Validation,” by
contrast, answers the question, “Are we building the right product?” A sys-

12	 ; LO G I N : VO L . 35, N O. 1

tem is validated if it is doing what users need it to do (and—implicitly—not
doing things they do not want it to do) [3].

In human terms, verification involves making sure that we have obeyed the
documentation for a product in trying to manage it, while validation in-
volves ensuring that the documentation is itself correct and definitive about
the relationships between configuration and behavior. Current practice
engages in the former and assumes that verification implies validation (so
that explicit validation is optional rather than required). And this is almost
always a bad assumption to make.

Consider, for example, that a non-functional email server can be broken
in two basic ways. First, the configuration can remain unverified, e.g., the
configuration tool fails to modify it properly. It is more common, however,
for the configuration to be verified but not validated, e.g., the configuration
looks as it should, but the system still fails to forward email. The latter is a
validation problem.

In going around the table at LISA, I found that almost everyone has some
story of getting burned as a result of incorrectly assuming that the documen-
tation is correct. The simplest example is that of a manual page that de-
scribes the wrong syntax for a file, but there are much more subtle variants.
As software is revised, the manual pages need not keep up with it, so that
one is often reading older descriptions of newer software.

Closed-World Assumptions

The assumption that verification implies validation is just one example of
a “closed-world assumption” that arises in system administration practice.
Verification is necessary but not sufficient for validation. Verification is only
sufficient when “what you ask a system to do” is always “what it does.” This
is an implicit closed-world assumption that all influences upon the managed
system are known and accounted for. In other words, the kind of thinking
that this represents might be paraphrased as “to be is to do.”

There are many cases in which this implicit assumption fails to hold: when
the managed software has a bug that affects behavior, for example, or when
there are hidden unmanaged influences, such as a forgotten configuration
file that can adversely affect behavior. In the worst case, a security breach
can change all the rules and even replace the managed application with
another unknown and hostile one.

Closed-world assumptions pervade our practice. We often implicitly as-
sume that configuration completely determines behavior, and that a specific
configuration tool completely controls configuration and thus behavior. I
say “implicitly” because there is no conscious action on our part to assume
anything, but the assumption quietly lurks in how we use our data!

Consider, for example, how we currently document a site’s function. Usually,
some description of the configuration suffices: either a description of how
each machine is configured or some network-wide, tool-readable descrip-
tion. This seems innocent enough, until we consider that it is often the only
documentation of site function. At a deeper philosophical level, a configu-
ration description cannot be more than a statement of intent rather than
fact. Anything we do outside its closed-world assumption is (implicitly) not
documented.

; LO G I N : Fe b rua ry 201 0	config u r ation m a n ag em e nt ph e no m e nolog y	 13

Open-World Assumptions

Phenomenology, by contrast, implicitly adopts an open-world assumption
that more or less any behavior can arise as a result of configuring a system.
A system is what it does. The configuration might result in appropriate
behavior, but it might not. Verification does not imply validation. In other
words, we might think of an open-world assumption as equivalent to the
philosophical stance “to do is to be.”

One’s philosophical stance can have a profound impact upon one’s everyday
practice. If one really considers validation as separate from verification, then
there is no way to “prove” correct system function. As in software testing,
one can never fully test a system, and the only solid evidence one can gather
is that something is not working. But this philosophical stance also clarifies
some of our thinking about behavior. By throwing away a tacit and com-
mon assumption that has been proven false countless times, we are freed to
reason more clearly about configuration, behavior, and contingencies.

I consider it almost a tautology that the job of a system administrator is to
“close an open world,” i.e., to provide some concept of predictability in an
otherwise unpredictable environment [4]. One starts with an “open world”
(e.g., the Internet) and makes some adjustments to make that world “usable.”
Along the way, one forms “closures,” islands of predictability in an otherwise
unpredictable universe, where what you think you are telling something to
do is what it actually does, i.e., verification implies validation [5]!

The Value of Philosophy

So far, this discussion probably seems abstract and impractical. What, you
might ask, is the value of a philosophical stance? Isn’t system administration
what we do, and not how we think about it? I claim that simply refusing to
“believe” that verification implies validation has profound implications for
practice.

Particularly, if we refuse to blindly believe that verification implies valida-
tion, there is always a validation step after configuration management. That
step involves observing behavior, and effective testing (manual or automatic)
becomes a central part of system administration and our tools. Tools learn to
observe the world as well as to configure it.

But less tangible benefits include the ability to ask new questions that our
prior beliefs had sidelined. We must eventually ask, “What is validation?”
and, more importantly, “What behavior is actually desired?”

Monitoring Is Not Validation

One might think that log monitoring is a form of validation; after all, moni-
toring does measure behavior rather than configuration. But monitoring
records symptoms of behavior, not the behavior itself, and it is possible for a
system with the proper symptoms to be behaving improperly.

Consider the common problem of a log message saying that an undelivered
email was delivered. This can happen in many ways: for example, the file
system on which the message is to be stored can fail after delivery. Symp-
toms can only be definitively related to causes if there is again an implicit
“closed-world assumption” that the monitoring data is complete enough to
represent what actually happened. In the above case, that assumption is
equivalent to the assumption that “the disk does not fail,” which is clearly
ridiculous. Expected log entries are again necessary but not sufficient for

14	 ; LO G I N : VO L . 35, N O. 1

proper operation; there are many cases in which the log is correct but be-
havior is wrong.

Monitoring is validation if an appropriate closed-world assumption holds.
Thus, monitoring is sufficient if we have already verified (by some other
mechanism) that a closed-world assumption is reasonable. But monitoring,
by itself, cannot substantiate a closed-world assumption.

Real validation involves more explicit testing than most of us do. Are email
messages really being delivered? Are services responding properly? This
includes checking on the actual function of services, and not solely relying
upon logs of past behavior.

What Is Behavior?

To achieve validation we must first understand what behaviors are desir-
able. Describing behavior might seem a daunting task, but we are aided by
two simple ideas. First, user-level behavior is much easier to describe than
the configuration that assures it. Behavior is a much higher-level thing to
describe than configuration. A behavioral description can be written to be
relatively portable and reusable for many sites, while configuration contains
the (often hopelessly non-portable) methods for assuring that behavior.
Configuration—because it is “how” and not “what”—contains details that
have nothing to do with behavior. Second, most user needs are met by a set
of well-known behaviors. Behavioral expectations are largely homogeneous
over the whole Internet and thus more reusable from site to site than con-
figuration details, which by contrast are highly heterogeneous.

Note that a so-called “high-level configuration system” as first proposed by
Anderson [6] is not a description of behavior but, rather, an abstract (and
hopefully more portable) definition of configuration. A “high-level” configura-
tion language still describes “what a system should be” instead of “what a
system should do.” Any linkage between these two is again a closed-world
assumption.

Facing Social Forces

Given that the system administrator has to use phenomenology on a daily
basis, one might ask why implicit closed-world assumptions are so easy for
us to accept. I believe the roots of our closed-world assumptions are social
rather than scientific.

One social reason that it is “convenient” to sweep “behavior” under the rug
is that we remain unaware, on average, of exactly how our systems behave.
Users make changes, and thus behavior changes. There is “behavioral drift”
(and even “behavioral rot”) based upon independent actions of individu-
als, especially in a desktop environment. But at a deeper level, the system
behaviors that users “need” are different from what they might “want.” And
facing that quandary, and the quandary of whether to give users what they
want or what they need, remains “the elephant in the room” whenever we
discuss behavior.

Our job is “closing open worlds.” The typical user wants to be able to do
“everything.” And we can’t close that world.

I think this social reason is the real force underlying our confusion between
configuration and behavior, and between verification and validation. It is
“convenient” and “comfortable” to assume that configuration determines
behavior—and, implicitly, that verification implies validation—because

; LO G I N : Fe b rua ry 201 0	config u r ation m a n ag em e nt ph e no m e nolog y	 15

otherwise we have some very difficult social questions to answer about what
behavior “should” be. We can hide behind what tools do and escape the
“should,” by adopting a convenient closed-world assumption!

Do-Be-Do-Be-Do!

The old joke (which I first learned from scribblings on the MIT Math
Department men’s room wall) is that the response to Socrates’ “To be is to
do” and Sartre’s “To do is to be” is Sinatra’s “Do-Be-Do-Be-Do”! I think that
Sinatra better describes current configuration management practice than
Socrates or Sartre does. We make closed-world assumptions in enforcing
and monitoring behavior, and open-world assumptions in troubleshooting. I
believe that for the practice to evolve, we have to stop conveniently fabricat-
ing closed worlds where they cannot exist. But to do this, we must acknowl-
edge and directly deal with the social forces that brought about our current
philosophy.

Facing the social forces is uncomfortable, and the fuzzy relationship between
user and system administrator can become even fuzzier when we try to
document it. Users ask for “everything,” implicitly or explicitly, and we find
it difficult to say no. It is more comfortable sometimes to live in ignorance of
user expectations and hope in return that users live in ignorance of our true
limitations!

But I also believe that facing this “elephant”—and coming up with ways to
precisely specify and guarantee system behavior—is crucial to the ongoing
evolution of the profession. Without that step, system administration appears
to undertake the theoretically impossible task of closing every world the
user’s heart desires. Making the task clearer to the user involves casting out
our own closed-world assumptions in a first step toward encouraging users
to cast out theirs.

Only then can we truly be partners with users and replace attempting the
impossible with cooperating on the possible. To do this is to be.

references

[1] For some reviews of Dark Star, see http://www.flixster.com/movie/
dark-star.

[2] Alva L. Couch, “From x=1 to (setf x 1): What Does Configuration
Management Mean?,” ;login:, vol. 33, no. 1, February 2008.

[3] Barry W. Boehm, Software Risk Management (IEEE Computer Society
Press, 1989), p. 205.

[4] Alva L. Couch et al., “Seeking Closure in an Open World: A Behavioral
Agent Approach to Configuration Management,” Proc. LISA 2003.

[5] Mark Burgess and Alva Couch, “Modeling Next-Generation Configura-
tion Management Tools,” Proceedings of LISA ’06: 20th Large Installation System
Administration Conference (USENIX Association, 2006).

[6] Paul Anderson, “Toward a High-Level Machine Configuration System,”
Proceedings of LISA VII: 7th USENIX System Administration Conference (USENIX
Association, 1994).

