
20 ; L O G I N : V O L . 3 0 , N O . 1

T I N A  D A R M O H R A Y

firewalls and 
fairy tales
Tina Darmohray, contributing editor of ;login:, cur-
rently serves as Stanford’s Information Security
Officer. She is the editor of the Short Topics booklet
Job Descriptions for System Administrators and was a
founding member of SAGE.

tmd@iwi.com 

T H E  R E C E N T  I S S U E  O F  A  P O P U L A R
security rag had the following ad for a secu-
rity appliance inside the front cover: “If You
Believe Routers Can Secure Your Network,
You’ll Need Another Fairy Tale to Come True.”
This kind of sales and marketing FUD has
been used to hype the differences in security
products for years. With firewalls, in particu-
lar, there’s some historical background to all
the mud slinging which can give consumers
some market insight and savvy when shop-
ping for a solution.

Recall that the Internet was the outcome of a coopera-
tive research project. In its early days, the challenge
was to get and keep the computers talking to each
other. Many professional friendships were made
between humans at either end of the “next hop,” as
manual intervention and tweaking of routing tables
kept the Net humming. A spirit of cooperation perme-
ated the network, and guest accounts and remote
access were de rigueur. 

In 1988 the Morris worm hit the Internet hard. It
marked the end of blind trust on the Net. Before the
Morris worm, professional gatherings focused on sim-
plifying administration and improving reliability of the
machines and the network that connected them. After
the worm, attention turned to securing the network as
well. Network administrators started cobbling together
network access controls. Increasingly, Net News dis-
cussions, BoFs, and conferences dealt with the new
focus on computer and network security. It became a
necessary evil. 

Today’s booming computer security market masks the
early struggles of security-minded individuals. The
early implementers of network access control often
found themselves not just explaining the technology
but defending it as well, as they were perceived as
being counter to the spirit of cooperation that had
been the norm. Giving an invited talk on network
security was sometimes like volunteering to be the per-
son in the dunking booth at the local carnival! 

Despite their unpopularity in the user community, fire-
walls were deployed one network connection at a time.
The earliest firewalls consisted of routers configured to
filter out packets destined for particular internal net-
work ports, thereby denying access to internal services.
To those managing the network connections, this was
an obvious countermeasure. The router hardware and
software already existed and was in place. All that had
to be done was to use an existing capability to imple-
ment a more secure stance. 



Additionally, since the changes were made at the net-
work layer (layer 3 of the textbook 7-layer network
model), they were transparent to users’ applications. A
packet-filtering router yields a lot of bang for the buck.
Even simple access control lists (ACLs) can dramati-
cally enhance site security. And, as with all firewalls, the
“conservation of energy” is huge as you protect many
internal machines with a small set of perimeter devices. 

A simple filtering router examines network packets for
source and destination IP address, source and destina-
tion port numbers, and protocol type. Using this infor-
mation, decisions are made to route or reject packets.
Administrators choose the ports to be forwarded or
dropped based on the way that ports are assigned to
applications. A UNIX kernel reserves ports < 1024 for
privileged processes; it randomly assigns ports 1024
and above, as needed, to processes that request them.
The reserved ports are conventionally assigned as “well-
known ports” with a particular service being associated
with a particular port number. Thus, rejecting packets
destined for a particular well-known port translates
into filtering out the corresponding service. For exam-
ple, rejecting all traffic to TCP port 23 is intended to
disallow Telnet connections. Similarly, rejecting traffic
for TCP port 80 would disallow HTTP connections, and
so on. (For a list of well-known ports and their assign-
ments, see http://www.iana.org/
assignments/port-numbers.) 

Simple packet filters provided a cheap and easy security
solution, but the debate had just begun. Many argued
that they didn’t provide enough protection. Like most
security solutions, firewalls are about narrowing the
window of opportunity for intrusion. Critics pointed
out that packet-filtering firewalls innately fell short of
application-level firewalls. For the most part, the criti-
cisms focused on the tenuous binding of port numbers
to applications. Recall that this binding is based on the
UNIX convention of assigning ports. This is not a stan-
dard that must be rigidly adhered to, but a convention,
a traditional way of doing things. To that end, there’s
nothing stopping someone from running a service on a
different-than-expected port and thereby slipping
around the packet filter. The most common example of
this is the abuse of the high-end ports, numbered 1024
and higher. These ports must be allowed through static
filters in order to accept the return traffic of internally
initiated connections. 

My favorite story on this subject concerns a battered
university administrator who implemented a few sim-
ple packet filters to disallow some of the most danger-
ous services, like inbound Telnet. Predictably, the stu-
dents rebelled and publicized their own version of the
well-known port assignment convention, with Telnet
found on the port number matching the last four digits
of someone’s telephone extension. Most of the new port

assignments were > 1024, and glided right through the
packet filter, much to the dismay of the security-
minded network administrator. 

The critics of packet-filtering firewalls usually fell in the
application proxy firewall camp. They argued that
proxy firewalls are more secure because, since they
work at the application layer, they could examine the
payload of the packet, enabling them to be protocol-
specific. They could also authenticate traffic at the user
level. However, in those early firewall days, purists who
felt that packet filters just weren’t secure enough were
forced to build their own proxy firewalls, since there
were none commercially available at that time. 

Writing proxy firewalls isn’t for everyone. There’s real
coding involved and, since it’s for security purposes, it
better be well written and torture-tested. That’s too tall
an order for many system administrators, so packet fil-
ters remained a popular alternative. However, some
able and willing administrators took the time to write
proxies. A few of those early efforts were the DEC
SEAL, SOCKS, and the TIS Firewall Toolkit. The latter
two played a key role in what happened next in the evo-
lution of firewalls. 

When SGI acquired MIPS one afternoon in 1992, the
MIPS proxy firewall named SOCKS1 became publicly
available. Finally, a proxy firewall was available to the
masses. SOCKS was written by David Koblas, a system
administrator for MIPS Computer Systems. It is an ele-
gant solution, ultimately providing a mechanism to
protect internal systems by means of transparent prox-
ies that operate at the TCP protocol level. 

However, there was a hitch. The transparency came at a
price: Software needed to be deployed on each client
computer. While this was reasonable for the small
homogeneous MIPS Computer network, it can be logis-
tically prohibitive on any large-scale network with mul-
tiple OS platforms. 

In 1994, the White House was shopping for a vendor
who could get it onto the Internet securely. Marcus
Ranum, then of Trusted Information Systems (TIS), was
up to the task. He brought up whitehouse.gov and in
the process developed the TIS Firewall Toolkit
(FWTK). The FWTK proxies actually implemented a
secure subset of the most common network application
protocols. Because his work was funded with taxpayer
money, Marcus decided to release a version of the
FWTK to the Internet community. The release wound
up being an ingenious marketing move that gained a
huge following for the TIS technology. It 
didn’t require any software modifications on client sys-
tems and therefore ran quite easily in heterogeneous
environments. But the lack of software mods came at
the price of transparency to the users. Users were
exposed to the “double hop” it took to get out of the

; LO G I N : F E B R UA RY 2 0 0 5  F I R E WA L LS A N D FA I RY TA L E S 21



network via the proxy firewall. For example, to Telnet
outbound from the protected network, a user would
Telnet to the proxy server and then issue the command
to connect to the final destination. 

While functional, this wasn’t nearly as elegant as the
entirely behind-the-scenes connections that transpar-
ent proxies like SOCKS made on the users’ behalf. A
further drawback to the true application proxy
approach was the necessity of providing a specially
coded proxy program for each protocol that was to tra-
verse the firewall. With the rapid proliferation of pro-
tocols in the latter half of the 1990s, proxy firewall
vendors were forced to play a continuous game of
catch-up. So proxy firewall fans were left to port code
or provoke users, with no real alternatives in between. 

Meanwhile, vendors began to warm up to the emerging
firewall market. Livingston Enterprises was among the
first to market routers as firewalls. They heeded Brent
Chapman’s call for more security functionality and
implemented the features he outlined as being critical
(and missing in most vendors’ routers).2

At the time, and for a good while after Livingston’s
early entry into the firewall market, leading vendors
such as Cisco didn’t provide the increased functional-
ity that industry spokesmen like Brent were calling for.
Cisco eventually caught up, but their slow market
entry was a black eye for them with the security enthu-
siasts for years, and a soft underbelly on which proxy
firewall proponents hammered. 

Probably the most innovative of the early vendor
entries in the market was Checkpoint’s stateful packet-
filtering firewall. Checkpoint introduced a packet-fil-
tering product that considered connection-state infor-
mation when deciding to pass or drop traffic. Tracking
connection state (including “virtual” connections for
nominally connectionless protocols like UDP) enables
you to permit traffic to pass through the packet-filter-
ing firewall only if it is associated with a connection
you’ve explicitly approved, such as the data connection
of an FTP session, or the UDP response to a DNS
query. Checkpoint also introduced dynamic packet fil-
tering, which opens only the ports you need at the
time you need them. So, for example, if you need to
permit traffic on a high-level port in response to an
outbound connection request, that port is allowed, but
only for the duration of the connection. These two
major improvements to vanilla packet filtering really
raised the security bar for packet-filtering solutions. 

Aside from these early breakthroughs, there hasn’t
been a huge change in the bottom line of firewalls in
more than a decade: packet-filtering firewalls look at
layer 3 information, while proxies are able to inspect
the actual content of the packets. Once you open the
payload portion of the packet, you can make decisions
on that content as well, e.g., on user identity or
whether the data matches the kind of bits that should
be associated with a specific protocol. Beyond that,
though, most of the “new” entries into this market
space are just new marketing variations on the old
theme. Eventually the commercial version of the Fire-
wall Toolkit, Gauntlet, developed transparent proxies
and incorporated packet-filtering features to respond
to its perceived failings. Packet-filter vendors added
the ability to filter on packet payload. And everyone
moved toward “appliance” firewalls and Web GUIs for
administration. 

TIS’s Gauntlet and the Livingston Firewall router are
gone, and a horde of new names have taken their
place. The mainstream commercial firewall products
available today are actually hybrids of the packet filters
and application proxies first developed in the early
1990s. “Deep Inspection” firewalls are just packet fil-
ters that are going a little further up the stack than tra-
ditional packet filters. “Intrusion Prevention” devices
are usually combinations of signature-based intrusion
detection systems and traditional firewall technology
that shut down connections based on patterns in their
payload, in addition to making decisions based upon
ports or protocols. 

What is true is that solutions continue to merge, as
each of the two primary areas takes a little more from
one or the other and incorporates it into its baseline. A
close look at the new marketing rarely reveals actual
new technology, though. 

Next time you see a new firewall advertisement, take a
step back and analyze the claims through the lens of
history before you decide to fear or to fantasize that
fairy tales have come true. 

1. D. Koblas, “SOCKS,” Proceedings of the Third USENIX
UNIX Security Symposium (Baltimore, MD: USENIX Associa-
tion, September 1992). 

2. D. Brent Chapman, “Network (In)Security Through IP
Packet Filtering,” Proceedings of the Third USENIX UNIX
Security Symposium (Baltimore, MD: USENIX Association,
September 1992). 

22 ; L O G I N : V O L . 3 0 , N O . 1




