
A B E S I N G E R

tempting fate
Abe Singer has been a computer security researcher
with the Security Technologies Group at the San
Diego Supercomputer Center for the past five years.
His work has involved growing SDSC logging infra-
structure and analysis capabilities, participating in
incident response and investigation, and working
with the TeraGrid Security Working Group. Mr.
Singer, with Tina Bird, is the author of Building a
Logging Infrastructure, SAGE Short Topics booklet
#12. Mr. Singer’s current research is in automation of
syslog parsing and analysis toward data mining of
logs for security. In addition to his work at SDSC, Mr.
Singer is an occasional consultant, expert witness,
and lecturer. Prior to SDSC, he was a consultant for
several years and a programmer and system admin-
istrator for over 15 years.

abe@sdsc.edu

I N T H E D E C E M B E R 2 0 0 3 I S S U E O F
;login: I wrote an article called “Life Without
Firewalls” in which I talked about how we
do security at SDSC, why we do not use fire-
walls, and how we have been very success-
ful at keeping out intruders.

If I were superstitious, I’d say I should have known
better than to tempt fate. In the Spring of 2004, SDSC
had an intrusion that gave us a pretty good amount of
grief.

Rik Farrow suggested that I call this article “Eating
Crow,” but I stand by what I said in my previous arti-
cle. The intrusion was successful only because we
didn’t follow our own rules well enough. Our strategy
helped us detect the intruder quickly and reduced the
scope of the intrusion (it could have been much
worse, and for some other sites it was). Eight of our
hosts (out of several hundred) had root compromises;
moreover, the intruder was able to modify user-
owned files on one of our NFS servers. Our reference
system model allowed us to have the compromised
hosts reinstalled and up and running in less than two
hours each—we didn’t have to think twice about rein-
stalling a host.

As for our lack of firewalls, in this case a firewall
would not really have helped (as I’ll explain below).
In fact, shortly after the attacks, Marcus Ranum sent
me an email saying simply, “Living without Firewalls .
. . ;-),” so I explained what happened, to which he
responded, “aw crap, transitive trust, gets ’em every
time.”

So I’ll explain how our intruder got it, where we
failed, and how our security strategy helped mitigate
the problem; I’ll also talk about what we’ve learned
and what we’re doing differently. I’m going to be
deliberately vague about some things, to protect the
privacy of some of the people who have been compro-
mised and because the intruder is still actively attack-
ing sites.

Beginning in December 2004, we started hearing
about compromises at other sites. The intruder had
gotten root on some machines and had installed a tro-
janed SSH client, which he used to gather usernames
and passwords to other sites as users logged on to the
compromised hosts and then SSHed into remote
sites.1

The intruder would then log in to a user’s account at
the remote site and look around for ways to compro-
mise the host or any other host at the remote site.

; LO G I N : F E B R UA RY 2 0 0 5 TE M P TI N G FATE 27

By March 2004, we knew of several sites that had com-
promises. Tina Bird published a bulletin which
described the activity at Stanford and elsewhere.2

One morning in late March I received an email from one
of our systems about a failed sudo attempt by one of our
sysadmins (our version of sudo sends email to root
when it fails). A quick phone call verified that it indeed
was not the sysadmin. The host on which this happened
was the host we use to manage the rest of our
machines—those machines allow root rsh from the
management host so that we can automate configura-
tion of multiple hosts (this was described in my previ-
ous article). Of course, this definitely got our attention.

A quick check of logs found an rlogin3 to that account
from a workstation. A ps on that workstation showed a
root-owned process called “foosh”—definitely a bad
sign.

The process disappeared within minutes of our looking
at the host. We believe the intruder had spotted us and
decided to leave.

A check of the logs showed a particular user logging in
(via SSH) to one of our workstations from a remote site
with which we collaborate, and within a minute that
user logged in again from a cable modem somewhere in
the Pacific Northwest. Following immediately were
logins from the workstation to every other system on
which the user had an account (and numerous failed
attempts on hosts where the user did not have an
account).

Our logs also showed, shortly after the rash of logins,
that root was su’ing to several users, including the
user who had initially gotten my attention. The tty from
which the su’s were executed corresponded to one that
the suspected user had logged in to, and that user didn’t
have any privileged access. This was our indication that
the intruder had definitely gotten root on a host.

Various log entries gave us a clue about what the
attacker was doing. He had managed to get root on a
system and had done some investigating to determine
who might have privileged access. We think he looked
at things like who was in the root group, the SSH
known_hosts file, etc. He targeted our management sys-
tem, which only has accounts for those users who need
it. Thus, he needed an account on that host for which
he didn’t already have the password. He picked a user
who had access and su’ed to that user in order to be able
to rlogin to the management system. Once there, the
intruder apparently tried sudo, hoping to take advan-
tage of cached sudo credentials, which failed.

So how did the intruder get root on the first host? We’re
pretty sure he used a local kernel exploit. We had
patched the host but had not rebooted it, so the patch
had not actually taken effect (Mistake #1). We figured
this not only from our knowledge of the patch state of

the host, but because the intruder placed an executable
in a user’s home directory and modified the user’s .cshrc
to try to run the binary anytime that user logged in to a
Solaris box. The intruder was trying to get users to root
boxes for him. Fortunately, the intruder wasn’t very
good at writing shell scripts, as there was a syntax error
in the .cshrc file.

The logs also showed the intruder trying things like
putting a “+” in .rhosts (which is disabled on our hosts
and is logged when an rlogin is attempted). We found
keys added to various users’ .ssh/authorized_hosts file.
Process accounting also showed the intruder running a
program called “n,” but he had erased his tools before
logging out, so at the time we didn’t know what it was.

We rebuilt the machine and rebooted others that had
the same patch applied. We checked all users’ author-
ized_hosts and .rhosts files to make sure there were no
other accounts accessible. We changed the password for
the known compromised account.

I also called the site from which the compromised user
had originally logged in—where the password had been
intercepted—to let them know they probably had a
compromise. They called me back a couple of hours
later and confirmed that they had been owned.

A couple of days later, we found some modified auth-
orized_keys files again and discovered that another
Solaris host was compromised. This host was not vul-
nerable to the same exploit that had been previously
used, so the intruder had another exploit. This host had
also been patched but not rebooted. We did a lather,
rinse, repeat—reinstalled and rebooted hosts that
needed it. This host was also a Solaris 8 host, as was the
first host compromised, so we decided that all Solaris 8
hosts needed to be patched and rebooted (Mistake #2).

That weekend we discovered the intruder had gotten
root on a Solaris 9 box. We then realized we needed
to make sure all of our hosts were fully patched and
rebooted. Machines were carefully rebooted one by
one to make sure they came up okay, and at midnight
a few hosts that ran special applications were left for the
sysadmins who administered them to reboot (Mistake
#3).

The next morning, before the machines had been
rebooted, the intruder got root on another host, su’ed to
yet another user, and sent an email out to every email
address at SDSC and UCSD that he could find, with
some rather rude ASCII art and some typical script-kid-
die language, talking about how great he was and what
losers we were.

That was embarrassing, but we were able to recover,
reinstall the host that was compromised, reboot every-
thing, and make sure all our patches were up to snuff.

28 ; L O G I N : V O L . 3 0 , N O . 1

After that, we did not discover any more root compro-
mises on our Solaris or Linux hosts (I’ll qualify that
with “that we could detect”). News of the various intru-
sions spread, and we started getting calls from the
press. A spokesperson was appointed to deal with the
press. He was quoted as saying that the attacker had
only gotten a few perimeter systems and had not gotten
at our infrastructure (Mistake #4), which was true at
the time: A few workstations had been compromised,
but our file servers were intact, and we had no indica-
tion that the intruder had gotten onto any of those
hosts (although we did have some indications that he
tried).

The day after the newspaper article came out, the
intruder got root on the login node of one of our super-
computers, did a “wall” to all the users with some more
ASCII art, and did a “shutdown” on the host. In the
“wall” message, he quoted the part of the news story
about not getting at our infrastructure and claimed that
this shutdown was proof that he had actually gotten at
our infrastructure. We believe the intruder exploited an
unpatched FTP server that shouldn’t have been running
on the host in the first place (Mistake #5).

So that system was taken offline. It was due to go out of
production in a few weeks anyways, so we just left it
offline.

Somewhere in the mix of this, I received a call from
someone at another university. They had found John-
the-Ripper running on a cluster of theirs, with what
appeared to be a fragment of our shadow password file,
including my encrypted password. He sent me a copy,
and I was able to confirm that it was indeed my pass-
word.

Thus, we also knew that the intruder was cracking
passwords in addition to running trojaned SSH clients
at other sites.

When we took down the supercomputer, we also
changed passwords for all users (several thousand) and
audited our other supercomputers to make sure that
there weren’t signs of a compromise.

From then on, things calmed down. We continued to
see the intruder log in to compromised accounts (even
with the password changes), but no sign of root com-
promise. This was an acceptable state, not a great state,
but we could live with it; our big concern was root
compromise and compromise of our infrastructure—
the file servers, DNS servers, and such.

I then received a call from someone at yet another uni-
versity. He had found what appeared to be a copy of my
email inbox. He gave me the header timestamps from
the first and last message, and they corresponded to
messages in my inbox. And the dates were from a cou-
ple of weeks after we had cleaned everything up. We
had no idea at the time how the intruder had accessed

it—there were no signs of root compromise anywhere.
And we didn’t know how my account could have been
compromised, as I had not logged in from other sites—
had not left credentials available for use—and the logs
did not show any suspicious logins to my account. A
log message showed some more failed attempts to use
“+” in my .rhosts file, but we didn’t know how it had
been put there. The assumption was that my password
had somehow been compromised. So I changed all my
credentials and started logging in only from my laptop
using an SSH private key that had never left the laptop.
(It’s a Mac OS9 laptop, so I felt pretty good about the
integrity of the OS.)

Finally, a few weeks later, we figured out how the
intruder had done it. We had heard of a well-known
tool called nfsshell4 that the intruder had used at some
other sites, and so we tried it at our site. It worked. The
nfsshell tool exploits NFS servers that allow clients to
send mount requests from an unprivileged (“high”)
source port. And once a file system is mounted, there is
no validation of the UID used in NFS file operations. In
other words, nfsshell allows an unprivileged user to
mount a file system and then read and write files using
any UID. Since we squash root access via NFS, the
intruder was unable to write files as root, but was able
to write to files owned by any other user. So that’s how
he was able to stick SSH keys into authorized_keys
files, and how he got at my inbox, etc.

While we were looking at this problem, but before we
could react with a fix, the intruder decided to erase a
couple of home directories. At that point we took SDSC
off the Internet until we could remedy the situation.

It turns out there was a simple kernel parameter that
had to be set to disable unprivileged ports, and that
parameter had not been set. nfsshell is a very old ex-
ploit, and our previous server had been immune; we
had made the assumption that the new one was equally
immune (Mistake #6).

We fixed the file server, cleaned up, and brought SDSC
back online.

Since then, we continue to have the occasional user
account compromise, but no new root compromises.
We have seen the attacker come back and try the same
exploits, with no success.

Based on our lessons learned, we have changed a few
things at SDSC: We have shortened our patch cycle (it
was about a month long), and reboots get priority over
uptime. We have implemented two-factor (token-
based) authentication on our critical infrastructure
machines, as the only people who have to access those
are system administrators.5

So now you’re probably wondering why I stand by my
previous article and why I say a firewall would not have
helped. If we had had a firewall, we would have had to

; LO G I N : F E B R UA RY 2 0 0 5 TE M P TI N G FATE 29

30 ; L O G I N : V O L . 3 0 , N O . 1

allow inbound SSH, so that our users could log in. The
intruder used the same access mechanism our users
do, often from the same outside hosts.

Second, as I indicated at the beginning of this article,
we mostly were owned because of things we should
have been doing. It does show, however, that doing it
right is hard. You have to, well, do all of it right. If we’d
had our machines fully patched and rebooted, the
intruder probably wouldn’t have gotten root, at least
not with the techniques that we saw him use.

Also, many of the things we do mitigated the extent of
the compromise. For instance, squashing root and set
on our file servers kept the intruder from creating
setuid-root files and running them on other hosts.

Having Kerberized sudo kept the intruder from getting
sudo privileges, even when he managed to obtain a
user’s password. Having a separate set of credentials for
privileged access is definitely a Good Thing.

Our centralized log server allowed us to look at log
activity across hosts and provided assurance that we
had a good copy of log information, even if the
intruder erased or altered logs on the compromised
host.

And having reference systems allowed us to recover
quickly. Our Solaris hosts take a couple of hours to
reinstall, mostly unattended (it takes a while for a new
host to install all of its patches). Our Linux hosts take
around half an hour.

We fared better than some other sites. For instance, we
know of one site that allowed root logins via SSH for
sysadmin purposes. The intruder owned the worksta-
tions that the intruders were using to manage other

systems, and from there just got the root password.
Another site that we know of did not have root
squashed on their NFS server, so the intruder was able
to create setuid-root programs from one host and then
log on to another host and run the program. Yet
another site had to rebuild all of their compromised
hosts by hand—they had not automated the process.

Some lessons we learned about intrusions: Never
underestimate the capabilities of your attacker. Assume
your communications are being monitored. Don’t
taunt the animals. And reboot everything.

REFERENCES
1. In the academic community this is a very common prac-
tice; organizations are involved in collaborative activities,
researchers may be at one institution and be using the facili-
ties at another, etc. In fact, most of SDSC’s several thousand
users are located at other institutions, as our business is to
provide computing resources to researchers.

2. Stanford University Information Technology Systems and
Services, “Security Bulletin on Multiple UNIX Compro-
mises,” http://securecomputing.stanford.edu/alerts/multiple-
unix-6apr2004.html.

3. I often get funny looks when I mention using rlogin. We
only allow r-commands between hosts that we manage, and
we only allow managed hosts on the networks that this traffic
travels over. So spoofing tcp connections requires access to
the local network.

4. nfsshell, ftp://ftp.cs.vu.nl/pub/leendert/nfsshell.tar.gz.

5. I still believe that token-based authentication is too much
of an expense (not just the hardware costs, but the support
overhead) to do for all users, but it’s appropriate for those
who have privileges.

