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Complex software systems are difficult to configure and manage. When problems 
inevitably arise, operators spend considerable time troubleshooting those prob-
lems by identifying root causes and correcting them. The cost of troubleshooting 
is substantial. Technical support contributes 17% of the total cost of ownership of 
today’s desktop computers [3], and troubleshooting misconfigurations is a large 
part of technical support. Even for casual computer users, troubleshooting is often 
enormously frustrating. 

Our research group is exploring how operating system support for dynamic 
information flow analysis can substantially simplify and reduce the human effort 
needed to troubleshoot software systems. We are focusing specifically on configu-
ration errors, in which the application code is correct, but the software has been 
installed, configured, or updated incorrectly so that it does not behave as desired. 
For instance, a mistake in a configuration file may lead software to crash, assert, 
or simply produce erroneous output. 

Consider how users and administrators typically debug configuration problems. 
Misconfigurations are often exhibited by an application unexpectedly terminat-
ing or producing undesired output. While an ideal application would always output 
a helpful error message when such events occur, it is unfortunately the case that 
such messages are often cryptic, misleading, or even non-existent. Thus, the 
person using the application must ask colleagues and search manuals, FAQs, and 
online forums to find potential solutions to the problem. 

ConfAid helps mitigate such problems. ConfAid is run offline, once erroneous 
behavior has been observed. A ConfAid user reproduces the problem by executing 
the application while ConfAid monitors the application’s behavior. The user speci-
fies the application she wishes to troubleshoot and its sources of configuration 
data (e.g., httpd.conf for the Apache Web server). ConfAid automatically diagnoses 
the root causes of self-evident errors, such as assertion failures and exits with non-
zero return codes. ConfAid also allows its user to specify undesired output (e.g., 
specific error strings); it monitors application output to files, network, and other 
external devices for such user-specified error conditions. 

When ConfAid observes erroneous application behavior, it outputs an ordered 
list of probable root causes. Each entry in the list is a token from a configuration 
source; our results show that ConfAid typically outputs the actual root cause as 
the first or second entry in the list. This allows the ConfAid user to focus on one or 
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two specific configuration tokens when deciding how to fix the problem, which can 
dramatically improve the total time to recovery for the system. 

The rest of this article briefly describes ConfAid’s design and implementation, and 
it gives a short summary of our experiments with ConfAid. More details can be 
found in our OSDI ’10 paper [1]. 

Design Principles of ConfAid

We begin by describing ConfAid’s design principles. 

Use White-Box Analysis

The genesis of ConfAid arose from AutoBash [8], our prior work in configuration 
troubleshooting. AutoBash tracks causality at process and file granularity in order 
to diagnose configuration errors. It treats each process as a black box, such that all 
outputs of the process are considered to be dependent on all prior inputs. We found 
AutoBash to be very successful in identifying the root cause of problems, but the 
success was limited in that AutoBash would often identify a complex configuration 
file, such as Apache’s httpd.conf, as the source of an error. When such files contain 
hundreds of options, the root cause identification of the entire file is often too 
nebulous to be of great use. 

Our take-away lessons from AutoBash were: (1) causality tracking is an effec-
tive tool for identifying root causes, and (2) causality should be tracked at a finer 
granularity than an entire process to troubleshoot applications with complex con-
figuration files. These observations led us to use a white box approach in ConfAid 
that tracks causality within each process at byte granularity. 

Operate on Application Binaries

We next considered whether ConfAid should require application source code for 
operation. While using source code would make analysis easier, source code is 
unavailable for many important applications, which would limit the applicability 
of our tool. Also, we felt it likely that we would have to choose a subset of program-
ming languages to support, which would also limit the number of applications 
we could analyze. For these reasons, we decided to design ConfAid to not require 
source code; ConfAid instead operates on program binaries. 

Embrace Imprecise Analysis

Our final design decision was to embrace an imprecise analysis of causality that 
relies on heuristics rather than using a sound or complete analysis of information 
flow. Using an early prototype of ConfAid, we found that for any reasonably com-
plex configuration problem, a strict definition of causal dependencies led to our 
tool outputting almost all configuration values as the root cause of the problem. 
Thus, our current version of ConfAid uses several heuristics to limit the spread of 
causal dependencies. For instance, ConfAid does not consider all dependencies to 
be equal. It considers data flow dependencies to be more likely to lead to the root 
cause than control flow dependencies. It also considers control flow dependencies 
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introduced closer to the error exhibition to be more likely to lead to the root cause 
than more distant ones. In some cases, ConfAid’s heuristics can lead to false nega-
tives and false positives. However, our results show that in most cases, they are 
quite effective in narrowing the search for the root cause and reducing execution 
time. 

ConfAid’s Information Flow Analysis

Figure 1:  ConfAid propagates configuration tokens throughout the application using infor-
mation flow analysis. When an error happens, ConfAid uses the propagated information to 
determine the root cause of the undesired outcome.

We use the example in Figure 1 to illustrate the mechanics of ConfAid. Assume 
that the application exhibits an error if the configuration token ExecCGI exists 
in the config file. When the application runs, ConfAid uses taint tracking [7] to 
dynamically monitor the propagation of configuration tokens and to determine 
how the erroneous outcome depends on the configuration data. When the applica-
tion reads the value of the ExecCGI token from the configuration file, ConfAid 
taints the memory location that stores that value of token to indicate that its value 
could change if the user were to modify the value of ExecCGI in the configuration 
file. As the application executes, ConfAid observes that the value of execute_cgi 
depends on the value of the token, so it also taints that memory location. When the 
error happens, ConfAid sees that the error could have been avoided if the branch 
that tests execute_cgi had a different outcome. Since execute_cgi is tainted by the 
ExecCGI option, ConfAid identifies that configuration option as the root cause of 
the error. 

To analyze the information flow, ConfAid adds custom logic, referred to as instru-
mentation, to each application binary using Pin [6]. The instrumentation monitors 
each system call, such as read or pread, that could potentially read data from a con-
figuration source. If the source of the data returned by a system call is a configura-
tion file, ConfAid annotates the registers and memory addresses modified by the 
system call with a marker that indicates a dependency on a specific configuration 
token. Borrowing terminology from the taint tracking literature, we refer to this 
marking as the taint of the memory location. If an address or register is tainted by 
a token, ConfAid believes that the value at that location might be different if the 
value of the token in the original configuration source were to change. 
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/* a, b, c and d are read from the config file*/ 

if (c == 0) {	/* c set to 0 in config file */

	 x = a;	 /* taken path */ 

} else {

	 y = b;	 /* alternate path */ 

} 

z = d; 

if (z) assert();	 /* The erroneous behavior */  

Figure 2:  Example to illustrate causality tracking. The assertion only depends on variable z, 
which itself depends on the value of configuration token d. Configuration token c only affects 
variables x and y.

ConfAid specifies the taint of each variable as a set of configuration options. For 
instance, if the taint set of a variable is { FOO, BAR }, ConfAid believes that the 
value of that variable could change if the user were to modify either the FOO or the 
BAR token in the configuration file. 

Taint is propagated via data flow and control flow dependencies. When a monitored 
process executes an instruction that modifies a memory address, register, or CPU 
flag, the taint set of each modified location is set to the union of the taint sets of the 
values read by the instruction. For example, consider the instruction x = y + z where 
the taint set of x becomes the union of taint sets of y and z. Intuitively, the value of 
x might change if a configuration token were to cause y or z to change prior to the 
execution of this instruction. 

In traditional taint tracking for security purposes, control flow dependencies are 
often ignored to improve performance because they are harder than data flow 
dependencies for an attacker to exploit. With ConfAid, however, we have found that 
tracking control flow dependencies is essential since they propagate the major-
ity of configuration-derived taint. A naive approach to tracking control flow is to 
union the taint set of a branch conditional with a running control flow dependency 
for the program. However, without mechanisms to remove control flow taint, the 
taint grows without limit. This causes too many false positives in ConfAid’s root 
cause list. 

A more precise approach takes into account the basic block structure of a program. 
Consider the example in Figure 2. Assume a, b, c, and d were read from a con-
figuration file and have taint sets assigned to them. The value of c does not affect 
whether the last two statements are executed, since they execute in all possible 
paths (and therefore for all values of c). Thus, the taint of c should be removed from 
the control flow taint before executing z = d. When the program asserts, the control 
flow taint should only include the taint of d to correctly indicate that changing the 
value of d might fix the problem. 

ConfAid also tracks implicit control flow dependencies. In Figure 2, the values of x 
and y depend on c when the program asserts, since the occurrence of their assign-
ments to a and b depend on whether or not the branch is taken. Note that y is still 
dependent on c even though the else path is not taken by the execution, since the 
value of y might change if a configuration token is modified such that the condition 
evaluates differently. 
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When the program executes a branch with a tainted condition, ConfAid first deter-
mines the merge point (the point where the branch paths converge) by consulting 
the control flow graph. Prior to dynamic analysis, ConfAid obtains the graph by 
using IDA Pro [2] to statically analyze the executable and any libraries it uses (e.g., 
libc and libssl). For each tainted branch, ConfAid next explores each alternate 
path that leads to the merge point. We define an alternate path to be any path not 
taken by the actual program execution that starts at a conditional branch instruc-
tion for which the branch condition is tainted by one or more configuration values. 
ConfAid uses alternate path exploration to learn which variables would have been 
assigned had the condition evaluated differently due to a modified configuration 
value. 

To evaluate an alternate path, ConfAid switches the condition outcome and forces 
the program to execute the alternate path. ConfAid uses copy-on-write logging to 
checkpoint and roll back application state. When a memory address is first altered 
along an alternate path, ConfAid saves the previous value in an undo log. At the 
end of the execution, application state is replaced with the previous values from 
the log. Many branches need not be explored since their conditions are not tainted 
by any configuration token. After exploring the alternate paths, ConfAid performs 
a similar analysis for the path actually taken by the program. This is the actual 
execution, so no undo log is needed. 

ConfAid also uses alternate path exploration to learn which paths avoid erroneous 
application behavior. An alternate path is considered to avoid the erroneous behav-
ior if the path leads to a successful termination of the program or if the merge point 
of the branch occurs after the occurrence of the erroneous behavior in the program 
(as determined by the static control flow graph). ConfAid unions the taint sets of 
all conditions that led to such alternate paths to derive its final result. This result 
is the set of all configuration tokens which, if altered, could cause the program to 
avoid the erroneous behavior. 

Figure 3 shows four examples that illustrate how ConfAid detects alternate paths 
that avoid the erroneous behavior. In case (a), the error occurs after the merge point 
of the conditional branch. ConfAid determines that the branch does not contribute 
to the error, because both paths lead to the same erroneous behavior. In case (b), 
the alternate path avoids the erroneous behavior because the merge point occurs 
after the error, and the alternate path itself does not exhibit any other error. In this 
case, ConfAid considers tokens in the taint set of the branch condition as pos-
sible root causes of the error, since if the application had taken the alternate path, 
it could have avoided the error. In case (c), the alternate path leads to a different 
error (an assertion). Therefore, ConfAid does not consider the taint of the branch 
as a possible root cause, because the alternate path would not lead to a successful 
termination. In case (d), there are two alternate paths, one of which leads to an 
assertion and one that reaches the merge point. In this case, since there exists an 
alternate path that avoids the erroneous behavior, configuration tokens in the taint 
set of the branch condition are possible root causes. 
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Figure 3:  Examples illustrating ConfAid path analysis

Heuristics for Performance

ConfAid uses two heuristics to simplify control flow analysis. The first heuristic 
is the bounded horizon heuristic. ConfAid only executes each alternate path for a 
fixed number of instructions. By default, ConfAid uses a limit of 80 instructions. 
All addresses and registers modified within the limit are used to calculate infor-
mation flow dependencies after the merge point. Locations modified after the limit 
do not affect dependencies introduced at the merge point. 

The second heuristic simplifies control flow analysis by assuming that the con-
figuration file contains only a single error—we refer to this as the single mistake 
heuristic. This heuristic reduces the amount of taint in the application and the 
number of alternative paths that need to be explored by restricting the number 
of configuration values that can change. The single mistake heuristic may lead 
to false negatives. Potentially, if ConfAid cannot find a root cause, we can relax 
the single-mistake assumption by allowing ConfAid to assume that two or more 
tokens are erroneous. In our experiments to date, this heuristic has yet to trigger a 
false negative. 

Heuristics for Reducing False Positives

In our design as described so far, two configuration tokens are considered equal 
taint sources even if one has a direct causal relationship to a location (e.g., the 
value in memory was read directly from the configuration file) and another has a 
nebulous relationship (e.g., the taint was propagated along a long chain of condi-
tional assignments deep along alternate paths). Another problem we noticed was 
that loops could cause a location to become a global source and sink for taint. For 
instance, Apache reads its configuration values into a linked list structure and 
then traverses the list in a loop to find the value of a particular configuration token. 
During the traversal, the program control flow picks up taint from many configu-
ration options, and these taints are sometimes transferred to the configuration 
variable that is the target of the search. 
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We realized that both of these problems were caused by our implicit assumption 
that all information flow relationships should be treated equally. Based on this 
observation, we decided to modify our design to instead track taint as a floating-
point weight ranging in value between zero and one. When the error happens, 
ConfAid can rank the possible root causes based on their weights with the option 
with the highest weight being ranked first. 

Our weights are based on two heuristics. First, data flow dependencies are 
assumed to be more likely to lead to the root cause than control flow dependencies. 
Second, control flow dependencies are assumed to be more likely to lead to the root 
cause if they occur later in the execution (i.e., closer to the erroneous behavior). 
Specifically, we assign taints introduced by control flow dependencies only half the 
weight of taints introduced by data flow dependencies. Further, each nested con-
ditional branch reduces the weight of dependencies introduced by prior branches 
in the nest by one half. We chose a weight of 0.5 for speed: it can be implemented 
efficiently with a vector bit shift. 

Multi-Process Causality Tracking

The most difficult configuration errors to troubleshoot involve multiple interact-
ing processes. Such processes may be on a single computer, or on multiple comput-
ers connected by a network. To troubleshoot such cases, ConfAid instruments 
multiple processes at the same time and propagates taint information at per-byte 
granularity along with the data sent when the processes communicate. ConfAid 
supports processes that communicate using UNIX sockets, pipes, and TCP and 
UDP sockets and files. Since these operations are performed by Pin instrumenta-
tion, the taint propagation is hidden from the application and no operating system 
modifications are needed. 

Evaluation

Our evaluation answers two questions: 

How effective is ConfAid in identifying the root cause of configuration 
problems? 

How long does ConfAid take to find the root cause? 

Experimental Setup

We evaluated ConfAid on three applications: the OpenSSH server version 5.1, the 
Apache HTTP server version 2.2.14, and the Postfix mail transfer agent version 
2.7. All of our experiments were run on a Dell OptiPlex 980 desktop computer 
with an Intel Core i5 Dual Core processor and 4GB of memory. The machine runs 
Linux kernel version 2.6.21. For Apache, ConfAid instruments a single process; for 
OpenSSH, up to two processes; and for Postfix, up to six processes. 

To evaluate ConfAid, we manually injected errors into correct configuration files. 
Then we ran a test case that caused the error we injected to be exhibited. We used 
ConfAid to instrument the process (or processes) for that application and obtained 
the ordered list of root causes found by ConfAid. We use two metrics to evalu-
ate ConfAid’s effectiveness: the ranking of the actual root cause, i.e., the injected 
mistake, in the list returned by ConfAid and the time to execute the instrumented 
application. 
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We used two different methods to generate configuration errors. First, we injected 
18 real-world configuration errors that were reported in online forums, FAQ pages, 
and application documentation. Second, we used the ConfErr tool [4] to inject 
random errors into the configuration files of the three applications. ConfErr uses 
human error models rooted in psychology and linguistics to generate realistic con-
figuration mistakes. We used ConfErr to produce 20 errors for each application. 

Results

Application 
Root causes  
ranked first 

Root causes 
ranked  first 
with one tie 

Root causes  
ranked 
second 

Root causes 
ranked  

second with 
one tie 

Avg. time to 
run 

OpenSSH 
(7 bugs) 

2 2 2 1 52s       

Apache  
(6 bugs) 

3 1 0 2 2m 48s 

Postfix  
(5 bugs) 

5 0 0 0 57s

Table 1:  Results for real-world configuration bugs

Table 1 summarizes our results for real-world misconfigurations. ConfAid ranks 
the actual root cause first in 13 cases and second in the other 5. Sometimes, when 
the actual root cause is ranked second, the token ranked first provides a valuable 
clue to help troubleshoot the problem. For instance, in Apache the actual error 
usually occurs nested inside a section or directive command in the config file. 
For the two Apache errors where the root cause is ranked second, the top-ranked 
option is the section or directive containing the error. 

ConfAid’s average execution time of 1:32 minutes is much faster and far less 
frustrating than manual troubleshooting. For instance, one of the Apache 
misconfigurations is taken from a thread in linuxforums.org [5]. After trying to fix 
the misconfiguration for quite a while, the user went to the trouble of posting the 
question in the forum and waited two days for an answer. ConfAid identified the 
root cause in less than three minutes. 

Application 

Root 
causes  
ranked 

first 

Root 
causes 
ranked  

first with 
one tie 

Root 
causes  
ranked 
second 

Root 
causes 
ranked  
second 

with one 
tie 

Avg. 
time to 

run 

Avg. 
time 

to run 

OpenSSH 17 (85%) 1 (5%) 1 (5%) 0 1 (5%) 7s 

Apache 17 (85%) 1 (5%) 0 1 (5%) 1 (5%) 24s 

Postfix 15 (75%) 0 2 (10%) 0 3 (15%) 38s

Table 2:  Results for randomly generated bugs
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Table 2 summarizes the results for randomly generated configuration errors. For 
OpenSSH, ConfAid ranked the root cause first or second for 95% of the bugs. For 
the last bug, ConfAid could not run to completion due to unsupported system calls 
used in the code path. We could remedy this by supporting more calls. ConfAid 
also successfully diagnosed 95% of the Apache errors. For the remaining bug, the 
correct root cause was ranked 9th due to our weighting heuristic. For Postfix, 
ConfAid diagnosed 85% of the errors effectively. The remaining three errors were 
due to missing configuration options. Currently, ConfAid only considers all tokens 
present in the configuration file as possible sources of the root cause. If a default 
value can be overridden by a token not actually in the file, then ConfAid will not 
detect the missing token as a possible root cause. We plan to extend ConfAid to 
also diagnose misconfigurations that are due to missing configuration tokens. 

Conclusions and Future Work

Configuration errors are costly, time-consuming, and frustrating to troubleshoot. 
ConfAid makes troubleshooting easier by pinpointing the specific token in a 
configuration file that led to an erroneous behavior. Compared to prior approaches, 
ConfAid distinguishes itself by analyzing causality within processes as they 
execute without the need for application source code. It propagates causal 
dependencies among multiple processes and outputs a ranked list of probable root 
causes. Our results show that ConfAid usually lists the actual root cause as the 
first or second entry in this list. Thus, ConfAid can substantially reduce total time 
to recovery and perhaps make configuration problems a little less frustrating. 

There are several possible directions for future work. First, ConfAid currently 
only troubleshoots configuration problems that lead to crashes, assertion failures, 
and incorrect output; it does not yet help diagnose misconfigurations that cause 
poor performance. One approach to tackling performance problems that we are 
investigating is to first use statistical sampling to associate use of a bottleneck 
resource such as disk or CPU with specific points in the program execution. 
Then,ConfAid-style analysis can determine which configuration tokens most 
directly affect the frequency of execution of those points. 

Second, ConfAid currently assumes that the configuration file contains only one 
erroneous token. If fixing a particular error requires changing two tokens, then 
ConfAid’s alternate path analysis may not identify both tokens. We therefore plan 
to allow ConfAid to track sets of two or more misconfigured tokens and measure 
the resulting performance overhead. Potentially, we can use an expanding search 
technique in which ConfAid initially performs an analysis assuming only a single 
mistake, and then performs a lengthier analysis allowing multiple mistakes if the 
first analysis does not yield satisfactory results. 

Finally, we believe that ConfAid can be best improved if it is used and tested by 
many people. Therefore, we plan to release an open source version of ConfAid to 
the public. This will require us to make ConfAid more robust in diverse computing 
environments, and we will also need to use an open source static analysis tool to 
generate a control flow graph. 
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