
	12    ;login:  VOL. 36, NO. 1

NETWORKSafely Using Your Production Network
as a Testbed
R O B S H E R W O O D

FlowVisor is a prototype implementation of network slicing, a technique for allow-
ing production and experimental network protocols to safely share the same physi-
cal infrastructure. FlowVisor relies on OpenFlow, a new protocol for managing
switches and routers that controls network traffic using patterns found in packets.

Network administrators must strike a careful balance between providing a solid,
reliable network and a network that has the cutting-edge services demanded by
its users (e.g., multicast, IPv6, IP mobility, or something more radical such as a
traffic load balancing service). This is particularly challenging in a research or
university setting, as some of the requested services are themselves experimental
and therefore already disruption-prone in nature. Further complicating this issue
are up-and-coming technologies like OpenFlow [3] that allow network adminis-
trators, operators, and researchers to program custom services into the network.
OpenFlow provides programmatic control of how packets are forwarded, and with
it researchers are prototyping novel network services [1, 2]. But while OpenFlow
allows interesting new network services, this additional freedom comes at the cost
of additional potential sources of network instability.

Common practice is to deploy new services in a smaller testbed or isolated VLAN
and then, after some time has passed and confidence has been built, transition
the service to the production network. This approach has two main shortcomings.
First, typically for reasons of cost, testbeds rarely have the same size, number of
users, heterogeneity, or, more generally, complexity as the real production net-
works. As a result, it’s not uncommon for a service to work correctly in the testbed
but still have problems in the production network. Second, once the service has
passed its testbed evaluation, there is typically not an incremental and controlled
(e.g., user-by-user) way of deploying the service in the production network. For
example, on most routers, multicast support is a binary feature: it is either enabled
or disabled, so some error in the service could affect all users, not just the ones that
elect to use multicast.

Our approach, as demonstrated by our first prototype, called FlowVisor [7], is to
divide the network into logical partitions, called slices, and to give each service
control over packet forwarding in its own network slice. Users then opt in to one
or more network services: that is, they delegate control of subsets of their traffic to
specific services. The existing production network services (e.g., Spanning Tree,
OSPF, etc.) run in a slice, and by default, all users are opted into the production
slice. Critically, the FlowVisor ensures strong isolation between slices: that is,
actions in one slice do not affect another slice.

Rob Sherwood is a Senior

Research Scientist at Deutsche

Telekom Inc.’s R&D Lab in Los

Altos, California. Additionally,

Rob is a member of the Clean Slate Lab at

Stanford University.

r.sherwood@telekom.com

	 ;login:  FEBRUARY 2011   Safely Using Your Production Network as a Testbed    13

For example, a network administrator, Alice, could use FlowVisor to divide her
network into three slices (Figure 1). The first slice the administrator keeps for her-
self as a production slice and in it runs standard, well-vetted network protocols,
e.g., OSPF, Spanning Tree, or basic MAC-address learning/switching using avail-
able open source software such as Quagga [6] or NOX [4]. The administrator then
delegates the second and third slices to two network researchers, Bob and Cathy.
Bob is developing a network service optimized for high throughput, and Cathy is
running a service optimized for low packet-loss. Then the network’s users are able
to pick and choose (e.g., via an authenticated Web page) which slices control their
traffic. For example, users not trusting the research slices might elect to have all
of their traffic controlled by Alice’s production slice. By contrast, an early adopter,
Doug, might be more interested in the new slices and elect to have his gaming
traffic be controlled by Cathy’s slice, his HTTP traffic be controlled by Bob’s slice,
and the rest of his traffic (e.g., VoIP) controlled by Alice’s production slice. The key
point is that the FlowVisor would enforce isolation between these slices so that
if one slice had a problem (e.g., created a forwarding loop), it would not affect the
other slices even though they shared the same physical hardware. Further, new
services would be deployed more incrementally, i.e., user by user, creating a more
graceful service introduction process.

Figure 1:  Network slicing allows multiple network protocols to run safely together on the same
physical infrastructure.

Slicing Control and Data Planes

Network slicing is a way of allowing multiple services to share control of the same
physical network resources. At a high level, the internals of modern switches,
routers, base stations, etc. are typically divided into a control plane and a data
plane (also called the slow path and the fast path, respectively). The control plane
is a collection of software applications typically running on a general-purpose
CPU, where the data plane is one or more application-specific integrated circuits
(ASICs). The control plane is responsible for formulating higher-level forwarding
rules of the form “if a packet matches pattern, then apply actions,” which are then
pushed down to, and enforced by, the data plane. The exact nature of the pattern
and actions varies by device: for example, on a router, the pattern might be a CIDR-
prefix and actions would be “decrement TTL and then forward out port 14.” The
important point is that there is a communications channel between the control and
data planes.

	14    ;login:  VOL. 36, NO. 1

Similar to how a hypervisor sits between multiple virtual machine operating sys-
tems and the underlying hardware, network slicing is a layer between the multiple
control planes and the underlying data planes. Each slice runs its own logical con-
trol plane and makes its own packet-forwarding rules. The slicing layer ensures
isolation between slices by verifying that forwarding rules from different control
planes/services do not conflict. Note that once a rule is pushed into the data plane,
packets are forwarded at full line speed, so network slicing has no packet forward-
ing performance penalty. Network slicing can even isolate bandwidth between
slices by mapping a slice’s actions onto a per-interface quality of service (QoS)
queue.

Our network slicing implementation, FlowVisor, is implemented on top of Open-
Flow. OpenFlow is an open standard for controlling data planes of existing
network hardware. An already existing and deployed switch or router can be Open-
Flow-enabled with a firmware upgrade. Once a network device supports Open-
Flow, network administrators or researchers can write their own control logic to
make low-level packets forwarding decisions, e.g., writing a new routing algorithm.
In OpenFlow, the control plane is moved off the network device to an external con-
troller (typically, a commodity PC); the controller talks to the data plane (over the
network itself) using the OpenFlow protocol. The controller is simply a user-space
process that speaks the OpenFlow protocol to OpenFlow-enabled devices.

The FlowVisor acts as a transparent OpenFlow proxy, sitting between the switch
and a set of OpenFlow controllers. The FlowVisor intercepts messages as they pass
between switch and controller, and rewrites or drops them to ensure that no ser-
vice violates its slice configuration. FlowVisor’s configuration file specifies which
sets of resources are controlled by each slice, including topology and bandwidth,
and which classes of packets each slice manages.

Deployment and Scalability

Even though it is still a research prototype, FlowVisor has been deployed in various
capacities on eight campuses and on one national backbone provider’s network.
At Stanford University, for example, FlowVisor runs on two different VLANs of
the physical production network, including 15 wired switches and 30 wireless
access points. It has been in place for over one year and slices the network that the
authors use for their daily email, Web traffic, etc. On each of the seven other cam-
puses (including Georgia Tech, University of Washington, Clemson University,
Princeton, Rutgers, the University of Wisconsin, and the University of Indiana),
FlowVisor manages a testbed network, but there are plans underway to move to
the production network. Additionally, the National Lambda Rail (NLR)—a national
backbone provider—has deployed OpenFlow and FlowVisor on a dedicated five-
node nationwide circuit.

Recently, FlowVisor-sliced networks were showcased at the ninth GENI Engi-
neering Conference. Five distinct OpenFlow-based projects ran simultaneously
on the same physical network nodes, as contributed by the eight campuses and
NLR. This demonstration is evidence that FlowVisor-style network slicing has the
necessary isolation capabilities to test new research on commercially available
production equipment.

We also evaluated the FlowVisor in terms of its scalability and overhead. The
FlowVisor’s total workload is the product of the number of switches, times the
average number of messages per switch, times the number of slices, times the aver-

	 ;login:  FEBRUARY 2011   Safely Using Your Production Network as a Testbed    15

age number of rules per slice. Our Stanford deployment does not produce a measur-
able load on our deployed FlowVisor, so we instead created a synthetic workload
that is comparable to the peak rate of a published real-world 8000-node enterprise
network [5]. Using this synthetically high workload, the FlowVisor maintains
under 50% CPU utilization on a single process on a modern server. In terms of
performance, we find that FlowVisor adds an average of 16 milliseconds of latency
for setting up a new flow and no overhead for additional packets in a flow. Thus, we
believe that a single FlowVisor instance could manage a large enterprise network
with minimal overhead.

Conclusion

FlowVisor-style slicing combined with OpenFlow offers potential relief to opera-
tors and researchers looking to deploy new network services without sacrificing
network stability. Our current efforts are focused on expanding our deployments
and better “bullet-proofing” isolation between slices. The source code for Flow
Visor is freely available from http://www.openflow.org/wk/index.php/FlowVisor.

References

[1] D. Erickson et al., “A Demonstration of Virtual Machine Mobility in an Open-
flow Network,” in Proceedings of ACM SIGCOMM (Demo), August 2008, p. 513.

[2] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Baner-
jee, and N. McKeown, “ElasticTree: Saving Energy in Data Center Networks,” 7th
USENIX Symposium on Networked Systems Design and Implementation (NSDI ’10).

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation in Campus
Networks,” ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, April
2008, pp. 69–74.

[4] http://www.noxrepo.org.

[5] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and B. Tierney, “A First Look
at Modern Enterprise Traffic,” in Proceedings of the Internet Measurement Confer-
ence 2005, pp. 15–28.

[6] http://www.quagga.net.

[7] R. Sherwood, G. Gibb, K.-K. Yap, M. Cassado, G. Appenzeller, N. McKeown, and
G. Parulkar, “Can the Production Network Be the Test-Bed?” in Proceedings of the
10th USENIX Conference on Operating Systems Design and Implementation (OSDI
’10), pp. 1–14.

