
	2    ;login:  VOL. 36, NO. 2

Rik is the editor of ;login:.

rik@usenix.org

While preparing this issue of ;login:, I found myself falling down a rabbit hole, like
Alice in Wonderland. And when I hit bottom, all I could do was look around and
puzzle about what I discovered there. My adventures started with a casual com-
ment, made by an ex-Cray Research employee, about the design of current super-
computers. He told me that today’s supercomputers cannot perform some of the
tasks that they are designed for, and used weather forecasting as his example.

I was stunned. Could this be true? Or was I just being dragged down some fictional
rabbit hole? I decided to learn more about supercomputer history.

Supercomputers

It is humbling to learn about the early history of computer design. Things we take
for granted, such as pipelining instructions and vector processing, were impor-
tant inventions in the 1970s. The first supercomputers were built from discrete
components—that is, transistors soldered to circuit boards—and had clock speeds
in the tens of nanoseconds. To put that in real terms, the Control Data Corpora-
tion’s (CDC) 7600 had a clock cycle of 27.5 ns, or in today’s terms, 36.4 MHz. This
was CDC’s second supercomputer (the 6600 was first), but included instruction
pipelining, an invention of Seymour Cray. The CDC 7600 peaked at 36 MFLOPS,
but generally got 10 MFLOPS with carefully tuned code.

The other cool thing about the CDC 7600 was that it broke down at least once a day.
This was actually a pretty common feature for ’70s computers, and something I am
old enough to remember.

Seymour Cray wanted to start over with a new design, rather than build on the
CDC 7600, and when he was unable to do that at CDC, he started his own company,
Cray Research (CR). CR’s first design used some integrated circuits, but only very
simple ones, like NOR gates and static RAM chips (1024 bits at 50 ns). Besides
instruction pipelining, the Cray 1 was superscalar; that is, it could complete multi-
ple instructions per clock cycle. Like the CDC 7600, it used a single address space,
although the Cray 1 had 16 banks of interleaved memory, allowing four 64-bit words
to be read per clock cycle—12.5 ns or 80MHZ. The Cray 1 peaked at 136 MFLOPS,
and NCAR continued to use this Cray 1 for weather forecasting until 1986.

To put these levels of performance into perspective, I took a look at the European
Centre for Medium-Range Weather Forecasts (ECMWF) supercomputer history
Web page [1]. In 1976, it took the CDC 6600 12 days to produce a 10-day forecast,
which doesn’t sound terribly useful to me. But the ECMWF considered this

OPINIONMusings
R I K F A R R O W

	 ;login:  APRIL 2011   Musings    3

hopeful enough to acquire a Cray-1A in 1978. With the Cray-1A, they managed to
produce that same 10-day forecast in just five hours.

The ECMWF continued buying and using Crays until 1996. Each new Cray came
with more CPUs, more memory, faster clock speeds, and more processing power.
But they all shared a critical design element: shared memory. For example, all of
the 16 CPUs in the Cray Y-MP shared a total of 16 GB. The Cray T3D was a big
departure from this design, as its 128 Alpha processors each had their own 128
MBs of memory. Memory was now distributed among the processors, and the
processors were connected together in a torus for fast inter-processor communica-
tion.

It was this change, from a shared memory architecture to a distributed memory
model, that I believe the Cray guy was concerned with. The ECMWF had to
rewrite their software so that it would run well on a distributed memory architec-
ture [1], while all previous forecasting software relied on a shared memory model.
The difference is that with shared memory, any data in memory is equally “far”
away from any CPU (has similar latency), while in distributed memory, some data
requires much longer to fetch, because it “belongs” to another CPU and is also
physically separated. The “belonging to” is an important issue, as writes to mem-
ory must be coordinated, so that one CPU does not change data while another CPU
is using that data—an important issue even with today’s multicore desktop CPUs.

The ECMWF and UCAR [2] today use supercomputers based on IBM’s POWER5
or POWER6-based clusters. These clusters include CPU nodes (pairs of CPUs)
that share memory, but are also connected to other nodes in the same rack over a
high speed interconnect, and then are connected to other racks using InfiniBand.
So these supercomputers have both shared memory and distributed memory. Hav-
ing both memory models in the same supercomputer makes programming more
difficult, as programmers need to be aware of the differences in latency when
fetching “near” data (shared) and “far” (distributed, across a network).

By this time, I was pretty convinced that my acquaintance had misled me into think-
ing that the supercomputers of old were superior to the supercomputers of today.
Instead, what I found is that the programming models had to change, to combine
both the techniques designed for the older, shared memory designs and the newer
technique for working with distributed memory correctly and efficiently.

Clusters

Today’s supercomputers are clusters that combine the shared memory of ’70s
supercomputers with distributed memory models. Just check out the Top 500
supercomputer list [3] and you will see that the world’s fastest computers are clus-
ters that combined shared memory models with fast interconnects to distributed
memory. The number two (in November 2010) was a Cray XT5-HE at Oak Ridge
National labs, composed of 37,336 six-core 2.6 GHz AMD Opterons (using shared
memory) connected together using a proprietary interconnect [4].

You may be wondering why I was even bothering with this wild goose chase. I
found the discussions of early supercomputers (just search for “Cray”) actually
quite interesting and helpful in understanding current supercomputer designs.
And as you read this issue of ;login:, you will notice that clusters, and even super-
computers, have become more common.

	4    ;login:  VOL. 36, NO. 2

MapReduce requires a loosely organized cluster of commodity computers to oper-
ate, as does Microsoft’s Dryad. When you read the summaries for LISA, you will
learn about the trials of the sysadmin in charge of getting a supercomputing cluster
interconnect working properly, when the interconnect hardware was limited to a
single supplier—one whose key product didn’t work very reliably.

There’s certainly more that can be written about this topic, and I do have more
research to complete before I am willing to write more. Stayed tuned...

The Lineup

Derek Murray and Steven Hand provide us with a crystal clear view of the differ-
ent ways to program for large clusters. Each method has limitations, with MPI, the
most popular library used in scientific programming, requiring a lot of knowledge
of the cluster and node architecture. The other big branch in programming for
clusters uses distributed execution engines. These range from completely unor-
dered systems, such as SETI@home, to MapReduce, with some ordering, and
Dryad, with explicit dependencies. Murray and Hand introduce Skywriting and
Ciel, a scripting language and an execution engine that support dynamic depen-
dencies, something none of the other distributed executions can do. Skywriting
supports iteration, as well as the simple and explicit ordering of MapReduce and
Dryad, providing more freedom to the programmer, without requiring that the
programmer understand the architecture of the cluster.

As this issue of ;login: includes summaries of LISA ’10, we have several articles
related to LISA. First up, Cory Lueninghoener presents strategies for getting
started with configuration management. Learning any software tool takes time
and effort, and configuration management incorporates additional obstacles to
implementation: homebrew systems and scripts, the coworkers who have built (and
probably love) these systems, control issues as configuration management takes
over loosely managed systems, as well as the threat of a massive failure during the
early implementation phases. Lueninghoener presents advice for dealing with each
of these issues, as well as simple strategies for getting up and running smoothly
using any of the popular configuration management tools.

Jim Donn and Tim Hartmann share their journey into using Splunk for logging. I
found I barely understood Splunk at all before reading their article (and listening
to their IT [5]). Donn and Hartmann, like Lueninghoener, provide a roadmap for
moving from a barely functioning logging system to one that supports many differ-
ent user communities. This case study can help you understand Splunk, and may
also serve as a warning to you: it seems that Splunk has addictive qualities, which
actually speaks very highly of its usability.

Doug Hughes, a Program Committee Co-Chair of LISA ’11, tells us why old styles
of backups just don’t work anymore. In this interview, Hughes explains the systems
they use at D. E. Shaw Research, where the focus is on supporting custom super-
computers used for molecular dynamics simulation. This work produces continu-
ous streams of results, all of which must be reliably stored and archived. Hughes
describes both a past and the present solution they are using to back up millions of
files and tens of terabytes of new data every month.

Ole Tange has another GNU tool to share this time. In the February 2011 issue
Tange described Parallel, an improved version of xargs. In this article,Tange
explains DBURL, a part of Parallel that unifies access to databases.

	 ;login:  APRIL 2011   Musings    5

David Blank-Edelman decided that his last column, about transferring data, just
didn’t take us far enough. After all, ftp and rsync are soooo last century. In this col-
umn David shows us how to use Perl modules for data transfer, all with his gentle
humor and easy style.

Pete Galvin suggests that those who were once interested in Solaris take a look at
Solaris Express 11. Solaris Express represents the next release of Solaris, which
Oracle has promised for sometime later this year. Solaris Express incorporates
Open Solaris features, and Pete covers features he hasn’t discussed in previous
columns. He also provides analysis on just why you might be interested in a Solaris
coming from Oracle.

Dave Josephson waxes eloquent about the reality of clusters and his utter horror at
the reality of the hardware. Well, not quite, but close enough. Dave then cuts to the
chase with some important advice about monitoring widely distributed clusters,
something he must do almost every day (he does take time off, or at least pretends to).

Robert Ferrell takes us for a ride, ranging from a rant about the future (quaternary
computing) to civility in the US Congress, then ramping down to poke holes in the
belief systems of a certain vendor.

Elizabeth Zwicky has two book reviews, written with her usual flair, followed by
three by Sam Stover (one a security book, the other two related to Arduino and Zig-
bee). Evan Teran took the plunge into a book on kernel exploitation and survived to
tell us about it. I review just one book, as the one I really wanted to review still has
me wondering just what to say about it. I guess you will just have to wait until the
next issue...

We have the conference reports from LISA ’10. Do keep in mind that you can watch
videos of most of the presentations of LISA’s three tracks, and some presentations,
such as David Blank-Edelman’s closing session, are much better experienced then
read about.

References

[1] European Centre for Medium-Range Weather Forecasts (ECMWF), supercom-
puter history: http://www.ecmwf.int/services/computing/overview/supercomputer
_history.html.

[2] UCAR Bluefire supercomputer: http://www2.cisl.ucar.edu/docs/bluefire/
system-information-overview.

[3] The Top 500 supercomputers: http://www.top500.org/.

[4] Jaguar supercomputer: https://secure.wikimedia.org/wikipedia/en/wiki/
Jaguar_%28computer%29.

[5] LISA 2010 Tech: http://www.usenix.org/events/lisa10/tech/#thurs.

