
	 ;login:  JUNE 2011     33

When I configure Highly Available (HA) systems, I intend to configure them such
that if either half goes down, the service remains accessible to the user. Too often,
however, I find that I have configured them to be Highly Unavailable (HU), mean-
ing that if either half goes down, the service becomes inaccessible.

Highly Available hosts typically sport redundant Ethernet NICs. Originally, I
would test these by unplugging the cable feeding each NIC, perhaps while send-
ing a continuous ping to the host’s IP address to measure how well it handled the
event. As it turns out, this test covers a limited selection of possible failure sce-
narios, not enough to determine whether the host has been configured HA or HU.
In this article I describe a test protocol which more accurately assesses the host’s
configuration.

HA Transport in Datacenters

There are many ways to design a datacenter [1] to deliver Highly Available Ether-
net/IP [2]. While the details vary widely—and have repercussions for host con-
figuration and the parameters described here—they all share the same concepts:
elements probe one another periodically to verify that the current network path is
viable and, if it isn’t, switch to an alternate path. For the purposes of discussion,
Figure 1 illustrates one such design. Contrast it with what I will call a Single Point
of Failure (SPOF) design, in which Switch B and Router B do not exist.

Figure 1: HA Ethernet/IP datacenter design

SYSADMINTesting the Transport Side of
Highly Available Hosts
S T U A R T K E N D R I C K

Stuart Kendrick works

as a third-tier tech at the

Fred Hutchinson Cancer

Research Center in Seattle,

where he dabbles in trouble-shooting,

deep infrastructure design, and developing

tools to monitor and manage devices. He

started earning money as a geek in 1984,

writing in FORTRAN on CRAY-1s for Science

Applications International Corporation;

worked in desktop support, server support,

and network support at Cornell University;

and reached FHCRC in 1993. He has a BA in

English, contributes to BRIITE (http://www

.briite.org), and spends free time on yoga and

CrossFit.

skendric@fhcrc.org

10.5.1.3

R
ou

te
rB

e0b

e0d

Switch B

10.5.1.1
10.5.1.2

R
ou

te
rA

Switch A

Host
10.5.1.40

eth0

eth1

Fi
le

r

e0a

e0c

	34    ;login:  VOL. 36, NO. 3

The Host is equipped with two NICs, one plugged into Switch A, the other into
Switch B. Filer is a NetApp storage controller; we’ll talk about it later. The two
Switches are interconnected and also provide paths to the upstream routers (likely
marketed as Layer 3 switches by their vendors, but for the purposes of this discus-
sion, I’ll use the term router to indicate a Layer 3 device). The Host is configured to
rely on 10.5.1.1 as its default gateway. 10.5.1.1 is configured as a virtual IP address,
currently owned by Router A. If Router A goes down, then Router B will acquire
10.5.1.1, thus hiding the loss of the default gateway from Host. We accomplish this
magic via the use of a gateway redundancy protocol, e.g., VRRP, CARP, HSRP, or
GLBP. Here is an example of HSRP in action on the wire; each router emits these
Hellos once per second.

Delta T	 Src	 Dst	 Protocol

0.55430	 10.5.1.2 ->	 224.0.0.2	 HSRP Hello (state Active)

0.07153	 10.5.1.3 ->	 224.0.0.2	 HSRP Hello (state Standby)

If the standby router (Router B) does not hear from the active router (Router A) for
a configured amount of time (three seconds in our environment), then the standby
router will change its state to Active, adopt both the MAC address and the IP
address of the default gateway (10.5.1.1), and thus set up shop as the “go to” router
on this subnet.

The Host can be configured to employ both NICs simultaneously (Active/Active)
or to rely on one NIC while holding the other in reserve (Active/Standby). In both
cases, though, it faces the same problem that Router A and Router B face: how does
it know when its partner—in this case, one of its NICs—is defunct?

Sources of Failure

By default, the average host out of the box pays attention to the Ethernet link signal
transmitted by the switch in order to determine whether it should consider a NIC
viable. Regrettably, a range of hardware failures and human fat-fingering can
result in the switch continuing to transmit link but no longer forwarding frames.
For example, when the Supervisor/switching engine (the brains card) in a switch
fries, the individual ports continue to transmit link, but the brains no longer for-
ward frames arriving from hosts. Rebooting a switch, perhaps to load a new oper-
ating system, results in similar behavior during the boot process—as the switch
reboots, it performs hardware tests on its cards, toggling link up and down several
times, all the while tossing incoming frames into the bit bucket. Similarly, a line
card can lose its connection to the switch’s backplane, or a human can fat-finger a
VLAN assignment, isolating a host from its intended conversation partners. The
lights are on, but no one is home.

Figure 2 enumerates the failure modes we have experienced at our institution.
Notice how, from a purely component-based point of view, Highly Available envi-
ronments will tend to experience twice as many component failures as their non-
redundant equivalents, because they contain twice as many parts. When compared
to a SPOF design, HA environments also mean that:

◆	 Operating staff spend twice as much time replacing fried components.
◆	 When systems are configured in a Highly Unavailable way, there’s twice as much

downtime.

	 ;login:  JUNE 2011   Testing the Transport Side of HA Hosts    35

Figure 2: Sources of failure

Ethernet and IP both being ship and pray protocols [3], the transport infra
structure cannot recover from such errors: the burden for detecting and
responding to such issues lies with the host. Hosts which rely strictly on link
for determining the validity of a NIC will transmit frames into the bit bucket ad
infinitum during one of these failure scenarios.

Polling

Host operating system designers and NIC driver developers commonly provide
mechanisms for Ethernet NICs to exchange keep-alives with each other, with the
upstream default router, or with the brains card on the nearby Ethernet switch. In
this fashion, the host OS determines whether or not a given NIC has a viable path
to the rest of the world (network) and then decides whether to continue forwarding
frames across that NIC. However, operating systems do not ship with these fea
tures enabled; we system administrators must identify which configuration fits
our environment and turn it on.

Linux

The Linux folks wrap their Ethernet HA options into their bonding driver [4]. In
this example, I poll the IP addresses of the local routers to determine the viability
of a NIC and of its path through the local network.

Host> cat /etc/sysconfig/network-scripts/ifcfg-bond0

DEVICE=bond0

IPADDR=10.5.1.40

NETMASK=255.255.255.0

NETWORK=10.5.1.0

BROADCAST=10.5.1.255

GATEWAY=10.5.1.1

[…]

BONDING_OPTS=’mode=active-backup arp_interval=1000 arp_validate=all \

arp_ip_target=10.5.1.2 arp_ip_target=10.5.1.3 primary=eth0’

Host> cat /etc/sysconfig/network-scripts/ifcfg-eth0

DEVICE=eth0

Optics Brains card

Cable

Line card

X

X

M
is

co
nf

ig
ur

at
io

n

X

X

X

N
IC

D
riv

er

X

X

X

NIC

X

Port

X

	36    ;login:  VOL. 36, NO. 3

[…]

MASTER=bond0

SLAVE=yes

Host> cat /etc/sysconfig/network-scripts/ifcfg-eth1

DEVICE=eth0

[…]

MASTER=bond0

SLAVE=yes

Be aware that the ifcfg-xxxx format was different in older versions of the bonding
driver; the format illustrated here became accurate with v3.2.0 or thereabouts.
Type cat /sys/module/bonding/version to view your version and see bonding.
txt for syntax variants appropriate for your version.

Restart networking via /etc/init.d/network restart or similar and verify that
the bonding driver correctly reports key parameters; see bolded text below.

Host> cat /proc/net/bonding/bond0

Ethernet Channel Bonding Driver: v3.2.4 (January 28, 2008)

Bonding Mode: fault-tolerance (active-backup)

Primary Slave: eth0

Currently Active Slave: eth0

MII Status: up

MII Polling Interval (ms): 0

Up Delay (ms): 0

Down Delay (ms): 0

ARP Polling Interval (ms): 1000

ARP IP target/s (n.n.n.n form): 10.5.1.2, 10.5.1.3

Slave Interface: eth0

MII Status: up

Link Failure Count: 2036

Permanent HW addr: 00:19:b9:32:76:25

Slave Interface: eth1

MII Status: up

Link Failure Count: 1

Permanent HW addr: 00:19:b9:32:76:27

On the wire, the result is the following, exchanged every 1000 ms:

Delta T	 Src		 Dst	 Protocol

0.50123	 Dell_32:76:25 ->	 Broadcast	 ARP Who has 10.5.1.2? Tell 10.5.1.40

0.50124	 Dell_32:76:25 ->	 Broadcast	 ARP Who has 10.5.1.3? Tell 10.5.1.40

0.50158	 Cisco_64:3a:de ->	 Dell_32:76:25	 ARP 10.5.1.2 is at 00:03:6c:64:3a:de

0.50162	 Cisco_43:bc:00 ->	 Dell_32:76:25	 ARP 10.5.1.3 is at 00:03:6c:43:bc:00

In this active-backup configuration, the active slave emits ARP Requests every
1000 ms. If it doesn’t hear an ARP Reply from either 10.5.1.2 or 10.5.1.3 within
2000 ms (2 * arp_interval: see drivers/net/bonding/bond_main.c in the Linux
kernel source), then the driver marks the active slave (eth0 in this case) as down
and initiates a failover to the backup slave (eth1) [5].

In this design, failure to hear from either 10.5.1.2 or 10.5.1.3 covers all the failure
scenarios illustrated above.

	 ;login:  JUNE 2011   Testing the Transport Side of HA Hosts    37

Windows

Under Windows, NIC manufacturers provide driver features which implement
similar polling. Intel calls their approach Teaming [6]; the admin uses a GUI [7] to
configure the parameters [8]. Let’s talk about the choices.

I prefer adapter fault tolerance (e.g., Active/Standby) over active load-balancing
(e.g., Active/Active), because I find packet capture easier. With Active/Active con-
figurations, I need two sniffers, plus the headache of merging the two trace files
together (rarely a precise process)—that is a lot of overhead, particularly when I am
in a hurry to fix something that is broken. Furthermore, if the host actually needs
to employ both NICs in order to deliver sufficient service (needs to transmit and/or
receive across both NICs), then it is no longer Highly Available—the loss of either
NIC will lead to service degradation.

I set Activation Delay to 100, which instructs the driver to leave a NIC disabled for
100 seconds after it has determined that the NIC is ready to return to production,
this because cable and switch failures can be erratic, working for a few seconds,
failing for a few seconds. By instructing the driver to wait a while before re-
enabling a previously disabled NIC, I harden the host against this sort of flapping
experience.

And of course I enable Probes.

Here is what Intel Teaming looks like on the wire, with the Active and Standby
NICs each sending probes to one another.

Delta T	 Src	 Dst	 Protocol

0.51795	 Intel_e4:ea:72 ->	Multicast	� Intel ANS probe Sequence: 3098765056,

Sender ID 256

			 Team ID 00:11:43:e4:ea:72

0.51796 	 Intel_e4:ea:73 ->	Multicast	 Intel ANS probe Sequence: 3098765056,

			 Sender ID 512

			 Team ID 00:11:43:e4:ea:72

Broadcom calls their approach LiveLink, which uses the same ARP polling
approach that Linux bonding uses, although LiveLink requires that each NIC have
its own IP address, in addition to the shared virtual address. For details, poke
around Dell’s site [9] or consult yours truly [10]. I recommend updating to the latest
drivers in order to dodge a series of nasty bugs—we’re using v4.1.4.0 successfully.

NetApp

The ONTAP designers chose to layer their Ethernet High Availability scheme
on top of IEEE 802.3ad, aka Link Aggregation Channel Protocol (LACP). Linux
bonding, Intel Teaming, and Broadcom LiveLink all support this approach as well;
ONTAP requires it. LACP was intended as a protocol to permit bundling multiple
Ethernet links into a single pipe or channel in order to increase the throughput
available between two switches or between a host and a switch. However, as the
ONTAP designers realized, LACP ships with a built-in polling protocol—the host
and the switch exchange periodic Hellos to ensure that their understanding of the
channel specifications are synced.

	38    ;login:  VOL. 36, NO. 3

Delta T	 Src	 Dst	 Protocol

1.05400	 NetApp_00:45:44 ->	Slow-Protocols	 LACP Actor Port = 1 Partner Port = 368

1.07000	 Cisco_06:b4:7f ->	 Slow-Protocols	 LACP Actor Port = 368 Partner Port = 1

The brains cards in Ethernet switches are responsible for emitting these Hellos.
Thus, the host configured for LACP can determine whether or not anyone is home
in the switch by listening for silence.

In ONTAP-speak, I create dynamic, multimode Virtual Interfaces (VIFs) [11]
using the LACP protocol and then combine pairs into single-mode VIFs, where e0a
and e0c are plugged into Switch A and e0b and e0d are plugged into Switch B, per
Figure 1 [12].

Filer> rdfile /etc/rc

hostname Filer

vif create lacp dmmvif1 -b ip e0a

vif create lacp dmmvif2 -b ip e0b

vif create lacp dmmvif3 -b ip e0c

vif create lacp dmmvif4 -b ip e0d

vif create single svif1 dmmvif1 dmmvif2

vif create single svif2 dmmvif3 dmmvif4

Myself, I don’t like entangling host and switch configurations—adds an additional
dependency and yet another way for the switch admin to break the host. Further-
more, while the host can detect both cable failure and switch failure using this
scheme, it cannot detect either a switch admin fat-fingering a VLAN assignment
or the loss of the path between Switch A and Router A. Finally, LACP misconfigu-
rations and bugs are hard to troubleshoot, because capturing the LACP traffic
requires an in-line sniffer (LACP is a link-local protocol, invisible to Wireshark
running on the host or port mirroring on the switch).

On the other hand, the LACP approach dodges the polling and configuration
subtleties inherent in the competing techniques, relying as it does on the protocol’s
built-in Hello function. And for the ONTAP developers and testers, it eliminates
an entire chunk of functionality (an ARP-based polling mechanism, for example)
which they would otherwise have to implement and maintain—all steps in the
right direction, as far as uptime goes. In the end, we like our NetApps for a range of
reasons, and this is the only NIC HA approach ONTAP supports, so we do it.

Application-Layer Protocols

As an aside, if our application-layer protocol contains its own polling techniques,
then we can dispense with all these kernel-level and driver-level shenanigans. For
example, SCSI Initiators and Targets exchange frames, if only NOPs, every five
seconds. When configured with multipathing, SCSI running over IP (iSCSI) and
SCSI running over Fibre Channel (FC) have no need for these lower-layer fault
detection protocols—SCSI itself detects the failure of a path and initiates failover
to a backup path—in our experience, a robust technique.

Here we see the iSCSI Initiator (10.5.1.50) emitting NOPs to its two iSCSI Targets
(10.5.1.61 and 10.5.1.62).

	 ;login:  JUNE 2011   Testing the Transport Side of HA Hosts    39

Delta T	 Src	 Dst	 Protocol

0.04404	 10.5.1.50 ->	 10.5.1.61	 iSCSI NOP Out

0.04450	 10.5.1.61 ->	 10.5.1.50	 iSCSI NOP In

0.05009	 10.5.1.50 ->	 10.5.1.62	 iSCSI NOP Out

0.05043	 10.5.1.62 ->	 10.5.1.50	 iSCSI NOP In

5.04423	 10.5.1.50 ->	 10.5.1.61	 iSCSI NOP Out

5.04451	 10.5.1.61 ->	 10.5.1.50	 iSCSI NOP In

5.05118	 10.5.1.50 ->	 10.5.1.62	 iSCSI NOP Out

5.05230	 10.5.1.62 ->	 10.5.1.50	 iSCSI NOP In

Test Procedure

So how do we verify that all this stuff actually works? I have experimented with
pulling cables, assigning ports to the wrong VLANs, and even inserting mini-
switches between host and switch (in order to sustain link but still produce a bit
bucket—I yank the cable marked with an ‘X’ in Figure 3).

Figure 3: Manual testing

Each of these tests provides varying levels of validation, with the mini-switch test
being particularly effective. However, the test I prize above all is rebooting each
of the switches and routers in turn, because a reboot exercises a whole range of
failure scenarios, from loss/restoration of link to the more brutal the lights are on,
but no one is home condition, incurred while the switch ports are transmitting the
link signal but the brains card is still performing hardware checks.

I like to measure the behavior of hosts using mass-ping [13], possibly because it
is a brilliant and precisely honed tool for tracking IP connectivity or possibly just
because I wrote it. mass-ping emits a stream of ICMP Echos, one per second, to a
list of IP addresses or to entire subnet ranges, giving the operator real-time feed-
back on behavior and saving the test result to a CSV file, which a supporting tool
can convert into a graphic.

Host> sudo mass-ping -s yes -c “Reboot Switch A” -n switch-a -w 900 -q 10.5.1.0/24

[sudo] password for skendric:

Sanity check...

Identifying live hosts...

Beginning with 144 live addresses

Pinging targets every 1 seconds with timeout 0.2 seconds, running for 15 minutes,

hit Ctrl-C to cancel...

144

3 3 3 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130

130 130 130 […] 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144

144 144 144 144 144 144 144 144 144 144 144 144

Switch A

Host

mini-switch

X

	40    ;login:  VOL. 36, NO. 3

The report at the end summarizes results:

# target	 hits	 misses

-------------- ----- ------

aurora	 897	 3

jennite	 897	 3

madison	 417	 483

osiris	 415	 485

[…]

The graph-mass-ping script takes the CSV data file as input and produces a
graphic illustrating when each host missed pings. The exclamation point repre-
sents ICMP Replies while the periods represent silence.

Title	 Mass-Ping: Reboot Switch A

Invocation	 mass-ping –i 1 –w 900 –t 0.2 –q 10.5.1.0/24

Details	 Run from Host on 2010-01-30 at 05:49 by skendric

Errors

Node count	 144

Time count	 900

Nodes			 Time

		 05:49:05	 05:49:15	 05:49:20	 05:49:25	 05:49:30

aurora	 !!!!!!!!!!!!!!!!!!!!...!!!

jennite	 !!!!!!!!!!!!!!!!!!!!...!!!

madison	 !!!!!!!!!!!!!!!!!!!!..

osiris	 !!!!!!!!!!!!!!!!!!!!..

[…]

In this example, the datacenter contained 144 active IP addresses, 130 of which
didn’t blink when Switch A went down. Of those that noticed, aurora and jennite
each needed three seconds to flip to their standby NICs, while madison and osiris
stumbled and didn’t recover.

Ideally, I run multiple simultaneous mass-ping invocations, from hosts located
within the datacenter (one on each VLAN) and from at least one host located
outside the datacenter, while performing each test. Large-format color printers
(tabloid sized paper), tape, and a lot of wall space allows me to view mass-ping
output for an entire datacenter. Periods during which all hosts miss pings suggest a
systemic issue—unplugged switch-to-router uplink cable or misconfigured routing
protocol. Periods during which many hosts miss pings but many do not suggest a
misconfigured VLAN. And periods during which a few hosts miss pings but most
do not suggest host-specific issues. In our environment, the most common causes
of systemic failure have been fried optics and misconfigured router interfaces,
while the most common causes of host failure have been bad NICs, unplugged
cables, and buggy NIC drivers.

Some hosts throttle the rate at which they will respond to pings—get enough mass-
ping sessions going and you can bump into that rate-limiter. For example, under
ONTAP, check your settings for option ip.ping_throttle.drop_level.

Rubber Hits the Road

We started implementing redundant Ethernet/IP transport in 1998, intermittently
testing it using manual techniques. In 2004 I automated the test process, writing

	 ;login:  JUNE 2011   Testing the Transport Side of HA Hosts    41

code [14] which steps through the 15 or so redundant pairs of routers and switches
at our institution, rebooting each one in turn, and watching, via pings, hosts on the
other side. It runs via cron once per month. When it detects trouble, it halts and
pages me. Each year, this automated process uncovers a handful of flaws in the
switched/routed infrastructure plus numerous host-specific issues [15].

The most spectacular issue we have uncovered to date revolved around our
NetApps. We had been skipping the automated testing of the larger datacenters,
based on conflicts with projects and general anxiety. In fact, the previous test had
occurred just prior to turning up our new centralized VMware cluster—seven Sun
4450s mounting a clustered FAS3020 back-end via NFS. Turns out that we had
misinterpreted NetApp documentation, believing that ONTAP implemented an
ARP-based probing scheme, similar to Linux bonding, and that this came for free,
without specific configuration on our part. Note to self: There is no free lunch. We
rebooted the first Ethernet switch to load the new OS, and VMs started crashing.
More precisely, Windows crashes when it cannot write to disk; Linux enters read-
only mode.

Apr 24 05:45:02 cairo kernel: Remounting filesystem read-only

Apr 24 05:45:02 cairo syslog-ng[2312]: io.c: do_write: write() failed (errno 30),

Read-only file system

In theory, detecting the frozen Windows guests was easy—our network manage-
ment station reported them down. In practice, we had been forgetting to add VMs
to the management station’s lists. Worse, many of the Linux guests continued to
respond to management station polls just fine . . . but, of course, at some point,
being unable to write to disk impacted their behavior. Note to self: Upgrade moni-
toring strategy to include polls which incur disk writes. Finally, the VMware hosts
themselves lost touch with the VMware console after this event, making them
unmanageable via the GUI and requiring reboots of each host to restore this func-
tion. Crawling through the lists of VMs and rebooting the ones which were hung
or read-only took hours, followed by a multi-day process of migrating guests off a
host, rebooting the host, and migrating guests back onto it.

After that, we started learning about dynamic multimode VIFs and LACP. Dur-
ing our most recent test of a datacenter, the NetApps and VMware cluster rode
through without blinking—we rebooted switches repeatedly, and they didn’t break
a sweat (dropping only the occasional ping). At this point, our filers literally don’t
care about the loss of an Ethernet switch.

Subtleties

Even without the fancy LACP configuration, most of our NetApps have ridden
through the loss of a switch without a problem, because our switches tend to toggle
link, if only briefly, when they reboot. So when Switch A reboots, for example, it
drops link on all ports for a few seconds. ONTAP notices the loss of link and flips to
a backup NIC attached to Switch B. The first switch does its stuff, returns to life,
and begins to service traffic—though the Filer ignores it, happily using its “b” side
NIC.

In the NetApps backing our VMware cluster, however, we had started to use the
favor command, which instructs ONTAP to fail back to the primary NIC, once link
is restored. That, of course, got us into trouble—line cards in a rebooting switch
will transmit the link signal early in the reboot process, long before the brains

	42    ;login:  VOL. 36, NO. 3

card will forward frames. The lights are on, but no one is home. As a result, ONTAP
would re-enable NICs attached to the rebooting switch too soon, sending traf-
fic into oblivion. In my experience, this example illustrates several themes in the
behavior of HA designs under stress:

u	 In general, HA systems handle losing a component more gracefully than return-
ing a component to service.

u	 Failed components will sometimes oscillate on their way to returning to life or on
their way to a permanent death.

Configuring HA systems to dawdle before returning a previously failed component
to service helps protect against these issues.

Conclusion

Like everything else in this business, developing these techniques has taken me
years of trial and error, and I expect to advance them further as I continue to better
understand how to migrate transport infrastructure from Highly Unavailable to
Highly Available configurations.

Note that I have focused on one particular Ethernet/IP datacenter design; the con-
figuration choices I sketch here apply to that particular design. Different transport
designs call for different configuration choices in bonding, Teaming, LiveLink,
and LACP.

In the future, I hope to expand my validation toolkit to include read/write tests
across storage devices and pings across Fibre Channel networks, to tackle the
challenge of verifying the failure behavior of application-layer clusters, and to
develop tools that proactively identify flaws in configurations.

References

[1] Cisco Datacenter Infrastructure Design Guide: http://www.cisco.com/
application/pdf/en/us/guest/netsol/ns107/c649/ccmigration_09186a008073377d
.pdf.

[2] Trey Layton, Virtual Port Channels, Cross-Stack EtherChannels, MultiChassis
EtherChannels: http://communities.netapp.com/blogs/ethernetstorageguy/
2009/09/23/virtual-port-channels-vpc-cross-stack-etherchannels-multichassis-
etherchannels-mec--what-does-it-all-mean-and-can-my-netapp-controller-use-
them.

[3] Howard Goldstein, Storage Network Design, Performance, and Troubleshoot-
ing: http://www.hgai.com/index_files/Page488.htm.

[4] Linux Ethernet Bonding Driver HOWTO: http://www.kernel.org/doc/
Documentation/networking/bonding.txt.

[5] Discussion of subtleties on the Bonding Development list: http://sourceforge
.net/mailarchive/forum.php?thread_name=AANLkTimhWimxhQZ
__i-eNU%3DYFJaXgQU_5J%3DLDUmO%3DFY0%40mail.gmail
.com&forum_name=bonding-devel.

[6] Intel Advanced Network Services Software Increases Network Reliability,
Resilience, and Bandwidth: http://www.intel.com/network/connectivity/
resources/doc_library/white_papers/254031.pdf.

	 ;login:  JUNE 2011   Testing the Transport Side of HA Hosts    43

[7] How to Configure Teaming Modes on Intel Network Adapters: http://www
.youtube.com/watch?v=GQ4WGGdlqpc.

[8] Network Connectivity Advanced Networking Services: http://www.intel.com/
support/network/sb/cs-009744.htm.

[9] Configuring LiveLink for a Smart Load Balancing and Failover Team: http://
support.dell.com/support/edocs/network/P29352/English/bacs
.htm#configuring_livelink.

[10] Stuart Kendrick, Configure HA Servers in Datacenters: http://www.skendric
.com/philosophy/Configure-HA-Servers-in-Data-Centers.pdf.

[11] Trey Layton, Multimode VIF Survival Guide: http://communities.netapp
.com/blogs/ethernetstorageguy/2009/04/04/multimode-vif-survival-guide.

[12] Stuart Kendrick, Focus on NetApp: http://www.skendric.com/philosophy/
Toast-Ethernet-IP.pdf.

[13] Mass-Ping: http://www.skendric.com/nmgmt/polling/mass-ping/.

[14] Red-Reboot: http://www.skendric.com/nmgmt/device/Cisco/red-reboot.

[15] Stuart Kendrick, “A Few Thoughts on Uptime,” pp. 64-65: http://www
.skendric.com/philosophy/A-Few-Thoughts-on-Uptime.pdf.

