
	 ;login:  AUGUST 2011     59

iVoyeur
Crom

D A V E J O S E P H S E N

Dave Josephsen is the

author of Building a

Monitoring Infrastructure

with Nagios (Prentice

Hall PTR, 2007) and is senior systems

engineer at DBG, Inc., where he maintains

a gaggle of geographically dispersed server

farms. He won LISA ’04’s Best Paper award for

his co-authored work on spam mitigation, and

he donates his spare time to the SourceMage

GNU Linux Project.

dave-usenix@skeptech.org

In 2006 I joined a tiny little company that was in the process of moving from the
California Bay Area to Texas. Their business was about half database outsourcing
and half niche Web site hosting. Their production infrastructure was primarily
Linux, but they’d had all sorts of sysadmins, so there were a few pieces of SCO here,
some HPUX there, etc.

The various sysadmins had also left their mark on the haphazard bowl of spaghetti
that was their back-end processing automation. This unruly mob of code that
extracted and imported, encrypted and decrypted, compressed and uncompressed
and sent hither and yon the data that was the lifeblood of the company was writ-
ten in all manner of languages, and never did the same thing the same way twice.
When I joined the company no one had a clear idea of what it was all doing, much
less how it managed to do it.

There were several hundred scripts in all, written in TCL, Perl, C, shell, and Java.
The DBAs knew where to drop things off and where to pick things up, and beyond
that nobody wanted to touch any of it. But now that the company was moving, it all
needed to get untangled, and the untangling had fallen to me.

It’s rarely much fun to inherit another sysadmin’s (or, in this case, gaggle of sys-
admins’) mess, but I was actually kind of fascinated by the problem. It was pretty
obvious that all of this stuff was doing the same subset of tasks over and over
again. Extract the file, encrypt the file, send the file. Repeat. My plan was to write
a library that encompassed all of those tasks, as well as enforce some standardiza-
tion, and then re-write all of the existing scripts using that library. None of this
was exactly rocket science, and transparency was important, so I took the LCD
approach and wrote the library in shell.

It was a commendable effort. The library enforced a common runtime directory
structure, so that everything was in a predictable place. It included its own logging
functions to ensure that all of the logging and error-handling was centralized and
in a common format. It even trapped signals and responded accordingly, such that
if anyone were to, for example, hit Ctrl-C in the middle of a script execution, the
library would gracefully exit. All of the scripts would use cron for scheduling. It
solved a lot of the problems that the original bowl of spaghetti presented, and even
changed the way I write shell scripts to this day (for the better), but ultimately, I
think, the effort was a failure.

There are several reasons I think I missed the mark on this problem, but really
they could be summed up by saying that I hadn’t given the company a solution. I’d

	60    ;login:  VOL. 36, NO. 4

rewritten their automation in the manner I thought it ought to have been done in
the first place, but for everyone other than myself, these scripts are still a black box
of mystery. Were I to leave the company tomorrow, the admin to replace me would
be more likely to write the next script in his or her language of choice (Ruby or Lua,
or whatever you kids are using this week) than to dig into my code to learn how
my boring, probably obsolete shell library worked. I hadn’t added to the mess, but
neither had I provided a means to ensure it didn’t reoccur. And really that’s why the
problem existed in the first place.

Also, there were aspects of bad engineering about it. Yes, there was a library of
reusable code there, and all those common tasks were represented as functions
within it, but I still needed to port the old scripts to new scripts, and those new
scripts all still did the same subset of things again and again. So there remained an
abhorrent amount of silly code redundancy—100 scripts to call different combina-
tions of the same 15 functions on 100 different files. Had I written a few proof-
of-concept scripts instead of being so focused on finishing the magical library of
wonder, I would have noticed it earlier. Once the lib was done, I’d ported about two
TCL scripts to it before realizing my mistake, but by then I was committed to the
design and nearly out of time. I paid for it in the mind-numbing 72-hour port-fest
that ensued, feeling stupider and stupider with each newly ported shell script.

Needless to say, the seed of a mental image of the correct answer formed in my
mind that night, but as these things go, it was a couple of years before I was able to
revisit the problem. That seed had plenty of time to germinate, and I was deter-
mined to get it right this time. The library wasn’t a bad idea at all, I just wasn’t
thinking big enough. The correct answer to this problem was, I think, just a single
layer of abstraction up from where I’d started. I had written a library to enforce a
common way to do things, but I needed a framework, and a set of common inter-
faces for people to use that library (in a way that didn’t force them to write their
own shell scripts). I call that framework “Crom.” And while Crom is dry fodder for
conversation, and only peripherally related to systems monitoring, it’s also about
all I’ve worked on for the last several months, so I’m afraid we’re stuck with it, dear
reader. My apologies.

Crom has a few operational assumptions about your job. First, it assumes that
your job can be broken down into tasks. Next, it assumes that you want to schedule
those tasks to run on a recurring schedule of some sort. Crom uses the UNIX at
command to perform the actual job scheduling, and it is written in 100% shell, so
it requires only /bin/sh, at, and the usual slew of shell commands like date, cut,
grep, and sed.

Although the similarities are unintentional, Crom’s architecture is quite similar
to Nagios [1]. It’s a task-specific scheduling and notification engine, but instead of
scheduling little monitoring plugins to collect metrics or check availability, Crom
schedules individual tasks that make up a larger Job. These tasks deal with some
little piece of automation, like loading data into an Oracle database or sending a file
via FTP to a remote host. Figure 1 shows a typical Crom job definition.

meta{

JOBID=4019

JOBNAME=exampleJob

DESCRIPTION=”An example job for the wonderful readers of ;login magazine”

NOTIFYONERRORS=’cromerrors@domain.com’

}

	 ;login:  AUGUST 2011   iVoyeur    61

task0{

DESCRIPTION=”extract the file from DB1”

TASKTYPE=’extract’

SCHEDULE=’1 0 * * 2’

SOURCE=”$(cat ${CTL}/${JOBID}/db1schema)@DB1:”

ORA_PROC=$CTL/$JOBID/file_extract.proc

ORA_ERROR=’halt’

}

task1{

DESCRIPTION=”scp the file from coke”

TASKTYPE=’pull’

SCHEDULE=’runafter:0’

PROTO=’sftp’

SOURCE=’oracle@DB1.domain.com:/data01/outgoing/Post*’

DESTINATION=%NEXT%

SKEY=”${KEYS}/oracle_DB1_dsa”

ARCHIVESOURCE=’1’

}

task2{

DESCRIPTION=”add a date to the filename”

TASKTYPE=’custom’

SCHEDULE=’runafter:1’

DESTINATION=’%NEXT%’

SOURCE=’%THIS%/Post*’

INCLUDE=”${CUSTOM}/${JOBID}/rename.sh”

}

task3{

DESCRIPTION=”sftp the file to xyz bank”

TASKTYPE=’push’

SCHEDULE=’runafter:2’

PROTO=’sftp’

DESTINATION=’dbguser@1.2.3.4:in’

SOURCE=’%THIS%/Post*’

DKEY=”${KEYS}/${JOBID}/xyz_dsa”

}

Figure 1: Crom job definition

Except for the surrounding brackets, each attribute is shell syntax. In fact, when
Crom reads in some piece of the job definition, it does so by extracting the section
it’s interested in between the brackets via sed, and then sourcing it. The attributes
are then available as shell variables. Since we source in the attributes, we can use
nested execution blocks to hide sensitive info such as passwords. In the example,
the SOURCE attribute in task 0 is reading in its Oracle schema and password from
an external file using $(). Crom inherits its directory structure from my original
back-end processing library and provides environment variable shortcuts to useful
directories at runtime. These may be used by any script that sources the library.
For example, task 0 in Figure 1 is using the ${CTL} shortcut provided by Crom to
locate an Oracle procedure file.

	62    ;login:  VOL. 36, NO. 4

Each job is identified by a unique job number, called the JOBID, and each task is
numbered sequentially. All tasks are required to have a schedule. There are three
valid types: (1) Crom can parse schedules in standard cron syntax using its own
parser (also written in shell); (2) a task may be scheduled to be run subsequent
to the successful completion of another task with the “runafter” keyword (any
number of tasks may “runafter” the same parent task in parallel); and (3) Crom
supports the “never” keyword as a valid schedule, for tasks that are never intended
to be run automatically (such as break-fix or debug tasks).

The Crom library supports macros in its definition files for those variables that
aren’t necessarily known at runtime. For example, task 1 in Figure 1 is mak-
ing use of the “%NEXT%” macro, which will resolve to “cromhome/run/today/
files/4019/2” (since 2 is the number of the next task). Since that specific directory
is actually known at runtime, we could have just specified that instead of using the
Macro %NEXT%, but the macro is preferable in that if the task is ever renumbered,
%NEXT% will continue to work without modification. %NOW% is another macro
supported by the library, which will resolve to the current time in seconds since
epoch format. Users may specify their own macros by placing their values in a file
named for the macro in Crom’s “macro” subdirectory. It’s common practice for
tasks to share data with each other by setting up macros in the jobs macro direc-
tory.

Each task is required to have a task type, which is similar to a plugin in Nagios.
Crom uses the TASKTYPE variable to locate the actual shell script to execute.
Since task 0 in Figure 1 is specified as an “extract” task, Crom will check crom-
home/bin for an executable named “extract”. If it finds “cromhome/bin/extract”,
it will schedule an “at” job at the next occurrence specified by the tasks schedule
passing the JOBID as argument 1 and TASKID as argument 2. Expanding Crom is
as easy as writing a shell script and placing it in cromhome/bin.

Strictly speaking, the executable is not required to be a shell script: it can be
any type of executable, and Crom will gladly schedule it for you. However, Crom
provides a litany of useful shell functions for tasks that are shell scripts, such as
functions for sourcing in the task definition from the job file, and job control and
logging functions. A task that sources the Crom libs can, for example, call the
“‘halt” function, which halts the current execution of the task, generates an error
to the logs, emails the recipient list specified by the NOTIFYONERROR variable,
and prevents any other tasks within the job from being executed or rescheduled. In
fact, tasks that source the Crom libs may make eight function calls relating to job
handling and logging alone: debug, notify, info, stop, warning, error, nonfatal_error,
and halt.

If you have a Java program and want to run it as a task under Crom, the wiser
thing to do is to use the “custom” task, which takes the name of a shell script as an
attribute called INCLUDE. The custom task will source in the script specified by
INCLUDE and will check for a function therein called “runCustom”, which it will
run. This way, we don’t need to port our Java code, but we retain full functional-
ity with the job control system at the cost of only a few lines of shell. The custom
function can also be used to build tasks that are not easily encompassed by a more
generic task type. Renaming a file and setting up a custom macro for a subsequent
task to use are good examples.

Crom was written with the expectation that large parts of it would be ripped out
and replaced wholesale. For example, it currently reads in its job definitions from

	 ;login:  AUGUST 2011   iVoyeur    63

files in the cromhome/jobs directory, but the plan has always been to replace the
jobs directory with an Oracle database table. The library is, therefore, modular
and extensible, and just nice to work with to an extent I find difficult to articulate.
Perhaps the best evidence of this is the fact that I find myself using it to write
things, such as supporting tools, that I normally wouldn’t bother with. Figure 2, for
example, is the output of the “cq” tool, which uses library function calls to sum-
marize the scheduling queue. I usually lose interest and move on long before I’d
consider writing something like this.

JOBID,TASKID	 ATID	 SCHEDULE

--

4007,0	 2420	 Mon May 30 01:00:00 2011 a crom

4007,2	 2422	 Mon May 30 01:01:00 2011 a crom

4007,4	 2425	 Mon May 30 01:04:00 2011 a crom

4007,6	 2426	 Mon May 30 01:10:00 2011 a crom

4007,8	 2427	 Mon May 30 01:12:00 2011 a crom

4008,0	 2309	 Tue May 31 08:00:00 2011 a crom

4008,3	 2334	 Wed Jun 1 08:00:00 2011 a crom

4010,0	 2415	 Mon May 30 00:15:00 2011 a crom

Figure 2: Output from cq, the Crom queue command

Most core functions, and every default behavior in the lib, are overridable by
defining a custom function or setting an environment variable. Several of the
supporting tools I’ve written, in fact, make use of override variables. The runtask
script, for example, is what I use for manual intervention when something goes
wrong. This script takes a JOBID and TASKID as its arguments and uses them to
force-run that task immediately, overriding states like halt, which would normally
make the task refuse any attempt at execution. Even within the default tasks we’ve
written, the error handling behavior is usually overridable. Task 0 in Figure 1, for
example, specifies an ORA_ERROR variable, which is there to override the default
behavior of the extract task when it encounters an error running sqlplus (changing
it from its default value of “error” to “halt”).

Crom can log to a flat-file log (which rotates daily), syslog (to a user-configurable
facility and priority), a FIFO (which we use to push log lines into a database with a
separate script), or any combination thereof. The log lines contain all of the infor-
mation you’d expect, plus a few fields I find especially useful at times, such as the
“run number” field, which uniquely identifies each iteration of a task that runs, for
example, every other minute all day long. Crom has built-in functions for sending
email notification and automatically notifies recipients when a task calls warning,
error, nonfatal-error, and halt.

Well, thanks for letting me gush over my shell script. This is about the only tool
I’ve written where I have no doubt I’m reinventing the wheel and it’s working so
wonderfully I just don’t care. It’s also the kind of tool that’s esoteric enough that I’m
not sure if I’m scratching an itch that nobody else has (but again, it’s still working
so wonderfully that I don’t care). If so, I’ve probably just bored you to death. Sorry
about that. Stay tuned for something more monitoring-related next time.

Take it easy.

