
	 ;login:  OCTOBER 2011     33

There may come a time in your Perl career when you find yourself asking, “Self...”
(because what else would you say?), “Is there a way to make this Perl code run
faster?” Many mental health professionals would say that talking to yourself is fine
as long as you don’t answer yourself, so let me do it on your behalf. When this time
comes, you have at least a couple of options.

The first is to buy a faster machine. Unbox it, plug it in, run your code. Done. You
may laugh, but that’s not a bad solution sometimes. It can actually be a better
option than the second one I’ll propose: figure out why your code is running slowly
and fix it. This option is often more fraught with peril than the first, because in the
process of trying to optimize, there are many chances to introduce new bugs into
the code. I could quote Knuth at you in an attempt to further scare you away, but
then I don’t think you’d read the rest of this column.

So how do you find out just where your code lags and how to fix it? The answer to
this question in general is one of those lifelong quests. You can strive to even be a
better coder, you can become a performance geek, or, heck, you can conduct basic
research on how to improve programming in general. I salute those of you who
already headed down any of these paths. In this column I’m going to try to help
anyone else who is a Perl programmer to take another step or two in this direction.

First, I recommend that you check out Richard Foley’s documentation shipped
with later versions of Perl (5.10.1+) by typing “perldoc perlperf”. The documentation
is a little out-of-date, but it is a good start. Some of this column will overlap with
the doc, but we’re going to spend much more time on the current best practices that
have evolved since 2008, when the doc was first written.

Benchmarks

Before we can directly answer the question “Why does my code run slower than I’d
like?” I think it is important to bring our legs into lotus position and spend a bit of
time meditating on some fundamental questions such as:

u	 What is “slow”?
u	 How will I know “slow” when I see it?
u	 Can I prove something is slow?
u	 Can I make “slow”?

I realize these all sound a bit more peyote-influenced than Perl-influenced, but
bear with me. We need to be able to find a way to time just how fast a piece of Perl

COLUMNS
David N. Blank-Edelman is

the director of technology at

the Northeastern University

College of Computer and

Information Science and the author of the

O’Reilly book Automating System Administration

with Perl (the second edition of the Otter

book), available at purveyors of fine dead

trees everywhere. He has spent the past 24+

years as a system/network administrator in

large multi-platform environments, including

Brandeis University, Cambridge Technology

Group, and the MIT Media Laboratory. He was

the program chair of the LISA ’05 conference

and one of the LISA ’06 Invited Talks co-chairs.

David is honored to have been the recipient

of the 2009 SAGE Outstanding Achievement

Award and to serve on the USENIX Board of

Directors beginning in June of 2010.

dnb@ccs.neu.edu

Practical Perl Tools
Do I Look Better in Profile?

D A V I D N . B L A N K - E D E L M A N

	34    ;login:  VOL. 36, NO. 5

code runs. Once we have that, we need to be able to change things and see how that
compares to the time it took to run the first version. Perhaps we want to see several
different versions of the same code go head-to-head so we can start to get a better
sense of what makes for a slow or fast implementation. I realize there is a bit of
handwaving in the last statement, because it is certainly possible to speed up some
code without having the foggiest idea just how you did it, but let’s assume the best
for the moment.

The easiest way to start with this stuff is to benchmark your code. The canonical
way to do this is to use a module that has shipped with Perl ever since it graduated
to version 5: Benchmark.pm. It includes the following routines (as described by its
documentation):

timethis: run a chunk of code several times
timethese: run several chunks of code several times
cmpthese: print results of timethese as a comparison chart
timeit: run a chunk of code and see how long it goes
countit: see how many times a chunk of code runs in a given time

Most often you see people using timethis() or timethese() to see how long a piece
of code or several pieces take to run many, many times. Modern machines are so
fast these days it often requires a huge number of runs of a piece of code to get a
good handle on just how fast that code might be (and to eliminate anomalies in the
testing environment). Here’s an example:

use Benchmark;

use Math::Random::ISAAC::XS;

use Math::Random::ISAAC::PP;

my $time = time();

our $xrng = Math::Random::ISAAC::XS->new($time);

our $prng = Math::Random::ISAAC::PP->new($time);

my $count = 10_000_000;

timethese($count, {

		 ‘XS’ => ‘$xrng->rand()’,

		 ‘PP’ => ‘$prng->rand()’,

	 });

In this example, we load the two modules that implement the very cool ISAAC
pseudo-random number-generator algorithm. The first is a Perl plus C code ver-
sion, and the second implements it entirely in Perl. We then specify how many
times we plan to run the test code ($count). The number 10 million here doesn’t
have any deep significance. I just started with 1,000 and added zeroes to it until
Benchmark.pm stopped complaining about the code not running long enough to
get a reliable test (ISAAC is fast). We then look to timethese() to run both the XS
and the PP subroutines, generating 10 million random numbers each. The program
runs and spits out a very nice result:

Benchmark: timing 10000000 iterations of PP, XS...

	 PP: 32 wallclock secs (32.58 usr + 0.01 sys = 32.59 CPU)

		 @ 306842.59/s (n=10000000)

	 XS: 2 wallclock secs (2.34 usr + 0.00 sys = 2.34 CPU)

		 @ 4273504.27/s (n=10000000)

	 ;login:  OCTOBER 2011   Practical Perl Tools    35

As expected, the XS version is much faster. For fun, I ran this sample code with a
$count of a hundred million. The difference in speed is even more pronounced:

Benchmark: timing 100000000 iterations of PP, XS...

	 PP: 321 wallclock secs (320.46 usr + 0.11 sys = 320.57 CPU)

		 @ 311944.35/s (n=100000000)

	 XS: 23 wallclock secs (23.54 usr + 0.02 sys = 23.56 CPU)

		 @ 4244482.17/s (n=100000000)

So there you have it, the very basics of how to do benchmarking in Perl. And I do
mean “basics.” Understanding how to really benchmark code (or anything) is a
very detailed and intricate art/science. I bow in the direction of the people who do
that for a living.

Profiling

Let’s get back to the original question: “Why does my code run slower than I’d
like?” We had to talk about benchmarking because it is an important tool for being
able to interpret and act upon the results of the process we really want to look at:
profiling. Profiling is the process of instrumenting a pile of code to determine just
how long each part of that code took to run (and how often it was run). With that
data it becomes easier to determine the parts of your code you could change to
improve the performance.

The tricky thing with profiling is determining just what “how long/often” actually
means. I know this is starting to sound like the contemplative moment from the
first section, but semantics here really do matter. For example, do you care how
busy you are keeping the machine (raw CPU time) or how long you should expect
to be tapping your foot waiting for the job to complete (real time)? A script can
take almost no CPU time, but take eons to finish running if it is waiting for data to
come in from a slow outside source or if the machine itself is bogged down. Which
of these two things you care about at any one time really depends on the circum-
stances.

If you think that’s a trick question, let’s continue splitting gigantic, important hairs
and ask the following: Do you care how long each specific statement in a program
takes to run or how long various parts of your code as a whole (e.g., the subroutines)
take? And if you care about the latter, do you want to know the total time for each
subroutine, including any calls it made, or do you care only about how long just the
code in that routine took? Or maybe you care about all of this? (If you don’t care
about any of this, see you next column!)

Luckily all of this information is available to you using current Perl tools...well,
more precisely, a single tool. Over the years there have been a number of profil-
ing tools written for Perl, but unless you have a good reason outside of the normal
use case, there’s really only one that you’ll want to consider using. Even though
there is a profiling tool that ships with Perl (Devel::DProf, which has been depre-
cated in the latest Perl distributions), the tool of choice here is Devel::NYTProf.
Devel::NYTProf is currently maintained by Tim Bunce, a name you might recog-
nize because he’s the author of the Perl DBI framework.

Just to set your expectations accordingly, if I were paid by the word to write this
column, I wouldn’t be very happy with this tool. Yes, you can tweak how it works
with various flags, but I’ve never had to use them. This is one of those tools that
just work well right out of the box. I won’t have to go into a huge amount of detail on

	36    ;login:  VOL. 36, NO. 5

how to get the most out of Devel::NYTProf because it tries to give its all every time
you use it. Remember all of the questions above about what sort of information
you might want to collect when profiling? Devel::NYTProf provides all of them by
default. It’s a lovely tool, really.

The first step for using Devel::NYTProf is to run the code you want to profile, but
to do so in a way that Devel::NYTProf gets loaded first so it can do its magic. Perl
offers a few ways to do this, including:

perl -d:NYTProf yourcode.pl	 # �run that Devel module as the debugger

code

PERL5OPT=-d:NYTProf	 # �set this environment variable and then

run the code�

perl -MDevel::NYTProf yourcode.pl	 # load the module first

Let’s actually run Devel::NYTProf on the previous code we used in the benchmark-
ing session:

$ perl -d:NYTProf maevebenchy.pl

Benchmark: timing 10000000 iterations of PP, XS...

	 PP: 127 wallclock secs (127.21 usr + 0.22 sys = 127.43 CPU)

		 @ 78474.46/s (n=10000000)

	 XS: 24 wallclock secs (23.12 usr + 0.03 sys = 23.15 CPU)

		 @ 431965.44/s (n=10000000)

Doesn’t look like anything happened. Yes, the run times got slower (running under
Devel::NYTProf does extract a bit of a performance penalty) but nothing else was
immediately visible. However, if we look at the same directory our script is in we
will see a new file there:

$ ls -l

total 66704

-rw-r--r-- 1 dnb dnb	 34147343	 Jul 25	 15:20 maevebenchy.pl

-rw-r--r-- 1 dnb dnb	 34147379	 Jul 25	 15:35 nytprof.out

$ file nytprof.out

nytprof.out: data

Devel::NYTProf has created a compressed file of profiling data. To actually use
this profiling data, we have to convert it to a more useful format or a report of some
sort. The distribution ships with three utilities for this purpose:

nytprofcg: Convert an NYTProf profile into Callgrind format
nytprofcsv: Devel::NYTProf::Reader CSV format implementation
nytprofhtml: Generate reports from Devel::NYTProf data

The first utility lets you put it into a format that the cool KCachgegrind utility can
read. This GUI utility builds on Linux and OS X (via MacPorts or Homebrew) and
Windows (see http://sourceforge.net/projects/precompiledbin/ for a pre-built ver-
sion for Windows). It shows you the profiling data, call chains, and other stuff in
a very pretty format. The second spits it out in CSV format, which might be useful
if you are inclined to further process the data with some other tool. When I use
Devel::NYTProf, I almost always use the HTML reports it provides, so let’s choose
that option:

$ nytprofhtml

Reading nytprof.out

	 ;login:  OCTOBER 2011   Practical Perl Tools    37

Writing sub reports to nytprof directory

	 100% ...

Writing block reports to nytprof directory

	 100% ...

Writing line reports to nytprof directory

	 100% ...

If we look now at the directory, we see:

$ ls

maevebenchy.pl	 nytprof	 nytprof.out

The “nytprof” entry is a directory with a bunch (in my case 77) HTML and .dot
files in it. The .dot files are Graphviz source files (a subject we’ve talked about in
past columns), which you can translate into pretty pictures of call graphs and such
using the utilities in that package.

If we open up the index.html file in a browser, we see the Devel::NYTProf top-level
report, which includes something like Figure 1 (for space reasons, I’ve cropped the
page so you can see just the first half of the report):

Figure 1: Part of the index page from the HTML report generated by nytprofhtml

If we click on one of the subroutines, we can drill down into it and see more detail
like that found in Figure 2 (again cropped for size).

Figure 2: Drilling down into the Devel::NYTProf report

As you can see, Devel::NYTProf is giving us a ton of data about what is running
and how long it takes. We can click on lots of links in the reports to look deeper
into what it has found. Unfortunately, in some ways, this was not the best code to

	38    ;login:  VOL. 36, NO. 5

profile, because it is highly artificial. We are intentionally running two specific
subroutines 10 million times (via timethese() in Benchmark.pm), so it is no sur-
prise that they dominate the profiling results.

If we were to simplify the code to just this:

use strict;

use Math::Random::ISAAC::PP;

my $time = time();

our $prng = Math::Random::ISAAC::PP->new($time);

print $prng->rand();

and run Devel::NYTProf on it, we might get a better sense of what parts of the code
are taking up time. Figure 3 shows a shot of the result, cropped this time to show
the second half of the index page.

Figure 3: A more informative Devel::NYTProf result

I’d encourage you to run this on your own code. You’ll get a much better sense of
what it is doing. Once you have that understanding, you can begin to improve it. For
more information on Devel::NYTProf and how to improve code using it, I highly
recommend Bunce’s talk on v4 of Devel::NYTProf, a screencast of which can be
found here: http://blip.tv/timbunce/devel-nytprof-v4-oscon-201007-3932242.

Take care, and I’ll see you next time.

