
	 ;login:  OCTOBER 2011     17

Hypervisor and virtualization technology is used to drive cloud computing, server
consolidation, clustering, and high availability solutions. The x86 processor line
is now the dominant platform for virtualization. Although the x86 processor has a
few virtualization challenges, many solutions have been architected. This article’s
purpose is to briefly explore the principles and operational concepts behind these
solutions.

VMware, Microsoft Hyper-V, XEN, KVM, and other Linux-based hypervisors are
among the growing number of popular implementations. Most hypervisors use
optimized forms of binary translation, paravirtualization, or CPU-supported solu-
tions for full virtualization implementation.

The Challenges of Virtualization and the Popek and Goldberg
Principles

Some of the main challenges of x86 virtualization are efficient OS isolation and
virtualization overhead. Operating systems expect to execute with unchallenged
privilege in order to support their own internal services and the services they offer
to user processes. In order to share the x86 CPU with multiple operating systems,
an intermediary protocol and a privilege mechanism will be needed. Without an
intermediary, CPU partitioning arrangement, or specialized operating system,
any attempt to run multiple operating systems would simply bring down the entire
system.

Other significant problems of virtualization include execution speed, security,
memory management, multiplexing, and isolation of devices such as network
cards.

The Popek and Goldberg principles of virtualization [1, 2] define a set of specifica-
tions for efficient processor virtualization. The standard suggests the ideal models
and expectations of privileged instructions. Ideal instructions should behave in
expected ways no matter what the current operating privilege level is and should
trap any problems. Not all of the x86 processor instruction set meets the Popek and
Goldberg principles, so an intermediary must be used to resolve the issues regard-
ing the problematic small subset of the entire instruction set of the x86 architec-
ture.

Hypervisors and Virtual Machines
Implementation Insights on the x86 Architecture

D O N R E V E L L E

Don is a performance engineer

and Linux systems/kernel

programmer, specializing

in high-volume UNIX,

Web, virtualization, and TCP/IP networking

performance. He has 15 years of UNIX systems

engineering and programming experience

with a few large high-profile companies in the

finance and Internet news media sectors.

don@js-objects.com

	18    ;login:  VOL. 36, NO. 5

The Hypervisor/VMM Abstraction as an Intermediary

Hypervisors supervise and multiplex multiple operating systems by using highly
efficient and sophisticated algorithms. The hypervisor is a well-isolated, addi-
tional but minimal software layer. The hypervisor must work with minimal
overhead and maintain supervisory privileges over the entire machine at all times.
The hypervisor seeks to define and enforce strong separation policies and finite
boundaries for which operating systems can operate cooperatively.

The x86 processor line uses privilege levels known as rings, and a stand-alone
hypervisor takes advantage of this fact. By obtaining privilege ring 0, the high-
est privilege level, the hypervisor can supervise and delegate all of the system
resources. Of course the other operating systems will have to be kicked down to
lesser privilege levels if the CPU does not support virtualization internally. X86
processor privilege protections provide the means to completely isolate the hyper-
visor. Often the hypervisor is referred to as a virtual-machine monitor (VMM),
and these terms are used in this article interchangeably.

The x86 processor is dependent on lookup tables for runtime management. Global
tables such as the interrupt descriptor vector and the memory segment descrip-
tors are examples of such structures. Controlling access to these tables is a must
for any VMM. In a multiplexed OS environment, these and other processor control
tables are maintained by the hypervisor only and therefore must be emulated for
each virtual context. In particular, it is the hypervisor’s role to manage all proces-
sor control tables and other processor facilities that cannot be shared in a multi-
plexed OS environment.

Overview of Virtualization Mechanics

Emulation with Bochs

Bochs [9] is a software emulation of a CPU and the various PC chipset components;
it implements the entire processor instruction set and emulates a fetch, decode,
and execution cycle the way a physical CPU does. Bochs executes all instructions
internally by calling its internal functions to mimic the real ones, which never hit
the CPU. The Bochs emulation engine is implemented as a user-space applica-
tion, and it uses its allocatable memory address space to model a physical memory
address space.

This type of translation loses the battle when it comes to execution speed. The
additional overhead of nested memory access, opcode parsing, and execution of
emulated instructions using procedures in memory results in multiple real proces-
sor instructions for each of the emulated instructions. Bochs is an example of a
simpler base case of virtualization.

Transition Algorithms and Direct Execution

Translators such as the versions used by VMware’s ESX Server [10] and QEMU
[11, 12] use intelligent forms of translation. Translators of this type have a huge
performance advantage over a simpler interpretive type of emulation such as
Bochs. The basic idea is to translate the source of instructions into a cache of
instructions that can directly execute on the processor.

Forms of binary translation are intermediary algorithms that are used for pro-
cessors that do not have virtualization support. As stated earlier, the x86 does

	 ;login:  OCTOBER 2011   Hypervisors and Virtual Machines    19

not meet the standards provided by Popek and Goldberg. There are a few proces-
sor instructions that do not behave in a manner suitable for virtualization. The
translation process scrubs and replaces problematic instructions with alternate
instructions that will emulate the original.

An overly simplified example follows. While in the fetch and decode phase, the
translator comes across the cli instruction. cli is a privileged instruction that dis-
ables interrupts on a x86 CPU. The translator can instead replace it with instruc-
tions that disable interrupts only on the abstraction that represents the virtual
CPU for the virtual machine, not the real CPU. Again, this is a basic conceptual
example to help get the idea of translation across.

The instructions that have been translated are cached into blocks that are used for
direct execution on a CPU, and at the end of each translated block are instructions
that lead back into the hypervisor. Any CPU exception or error that occurs while
the translated stream is executing forces the CPU back to the hypervisor. This is
critical for security and isolation; the virtualized operating system has no chance
of getting control of the CPU, unless the hypervisor itself has been compromised.

Note that VMware has developed a very sophisticated version of binary transla-
tion. The algorithm is called Adaptive Binary Translation [3]. In addition, it is a
VMM that has features that facilitate mass rollout and management of machines
such as virtual-machine migration and memory management. QEMU is itself a
user-space program, while ESX is implemented as a kernel. The advantage is that
ESX is a hypervisor in the more strict definition which gives it full operational
range over the processors.

Para-virtualization with XEN

Para-virtualization under XEN [4, 8] provides a software service interface for
replacing privileged CPU operations. Operating systems must be specifically
modified to be aware of the services that the XEN hypervisor provides.

To make an OS XEN-aware, the developer has to modify highly complex kernel
procedures and replace privileged instructions in the source code with calls to the
XEN interface which will emulate the operation in its isolated address space. After
the OS is recompiled against the XEN Interface, a directly executable operating
system is created. After some administrative setup, XEN can load and schedule
this OS for direct processor execution.

The communications gateway that the para-virtualized OS uses to request XEN
operations is based on interrupts, recast as hypercalls in XEN terminology. Hyper-
calls tie the operating system to the hypervisor. When a hypercall is issued, the
CPU transfers control to a hypervisor procedure which completes the request in
privileged mode. This is the same as the system call interface that system pro-
grammers are used to, except the requests are from the kernel to hypervisor. The
XEN privileged operations exist in an address space only accessible by XEN, and
this addressing method mimics the kernel/process address space split in standard
x86_32 processors.

Hypercalls are used for registering guest local trap tables, making memory
requests, guest page table manipulation, and other virtual requests. Kernel subsys-
tems such as the slab cache object allocation and threading are not virtualized, but
devices and page tables are virtualized. A full list of hypercalls can be viewed in
xen.h in the source tree.

	20    ;login:  VOL. 36, NO. 5

XEN, which is a stand-alone bare-bones kernel, maintains ultimate control over
the processor as it is the supervisor of the system and sits isolated in ring 0, and
the para-virtualized guest OS executes with reduced privileges. While any guest
OS is executing on a processor, any processor exceptions or errors are trapped and
handled by the hypervisor, thus providing strong isolation and security. For effi-
ciency, XEN allows Linux to directly handle its system calls (0x80h) while it is on
the CPU, thus bypassing the XEN layer. This is known as a fast-trap handler.

A XEN para-virtualized guest operating system has a startup and boot-strapping
procedure that is different from the stand-alone OS. There is no BIOS available
to query for things such as the installed memory size. XEN provides a special
table that is mapped into the guest OS address space as a replacement. This is a C
structure which is called the “start_info” page. The xen.h include file shows the
specifics of the contents of this structure.

It is generally accepted that para-virtualization provides very good performance.
The major downside is that the operating system source code must be modified by
the maker or a third party. This presents a problem for systems, such as the Micro-
soft OS product line, which are not open source. Popular open sourced operating
systems such as Linux and some versions of the BSD kernels have been success-
fully para-virtualized to run under XEN without CPU-supported virtualization.
Note that XEN does support CPUs with full embedded virtualization.

Full Virtualization with CPU Supported Extensions

AMD, Intel, and others have now embedded virtualization properties directly in
the processor. The advantage of this is that any x86-based operating system can
execute directly in a virtualized machine context without any binary translation
or source code modification. AMD calls its virtualization implementation AMD-V,
and Intel calls its implementation Virtualization Technology (VT).

The AMD and Intel virtualization chipsets support the concept of a guest operat-
ing system and a new additional privilege mode exclusively for hypervisor use. The
hypervisor executes with full authority over the entire machine, while the guest
operates fully within its virtual-machine environment without any modification.
From the guest OS point of view, there are no new or different privilege levels, and
the guest OS is not aware that it is itself a guest. The usual 0/3 ring setup is main-
tained for the kernel and user processes.

Both AMD and Intel use the key idea of a VMM management table as a data
structure for virtual-machine definitions, state, and runtime tracking. This data
structure stores guest virtual machine configuration specifics such as machine
control bits and processor register settings. Specifically, these tables are known as
VMCB (AMD [5]) and VMCS (Intel [6]). These are somewhat large data structures
but are well worth reviewing for educational purposes. These structures reveal
the many complexities and details of how a CPU sees a virtual machine and shows
other details that the VMM needs to manage guests.

The VMCB/VMCS management data structures are also used by the hypervisor to
define events to monitor while a guest is executing. “Events” are processor-specific
conditions that can be intercepted, such as attempts to access processor control
registers and tables. Note that the VMCB/VMCS data structures are only mapped
into hypervisor-accessible pages of memory. The guest OS cannot be allowed to
access these tables, as this would violate isolation constraints.

	 ;login:  OCTOBER 2011   Hypervisors and Virtual Machines    21

The triggering of a monitored event is called a VM-EXIT (virtual-machine exit).
When this happens the CPU saves the current executing state in the active VMCB
or VMCS and transitions back into the hypervisor context. Here the hypervisor
can monitor and fix the issue that caused the exit from the guest. Each specific pro-
cessor uses model-specific registers to store the location of VMCB/VMCS tables.

Any errors, unexpected problems, or conditions that may require emulation that
occur while the guest is executing force a VM-EXIT and switch to the hypervisor
host context. This is somewhat similar to the exception/trap transition sequence
used by x86 processors running standard operating systems.

Note that XEN, VMware, KVM, and Hyper-V support CPU-extended virtualization.

KVM under Linux

KVM is a very popular Linux-based hypervisor with full virtualization. KVM is a
kernel module that brings virtualization directly into the host Linux kernel. The
KVM is not completely stand-alone, as it uses the Linux host kernel subsystems.
KVM is implemented using CPUs with full virtualization support, along with a
QEMU software back-end. QEMU provides device emulation for guest operating
systems under KVM control. I/O requests made to virtual devices are intercepted
by KVM and queued up to a QEMU instance which is then scheduled for processor
time in order to complete the request.

One of the differences with KVM is that it uses the host Linux kernel subsystems.
Guest virtual machines are Linux tasks that execute in processor guest mode.
KVM supports most operating systems by utilizing CPUs with virtualization sup-
port. See the KVM documentation [7] for the supported list of operating systems.

IOMMU (I/O Memory Management Unit)

IOMMU chipsets are becoming mainstream on x86_64 architectures. An IOMMU
allows a hypervisor to manage and regulate DMA (direct memory access) from
devices. In a stand-alone OS environment, a device can access any system memory
address that it has address lines for. The operating system and its devices see a
single system memory address space.

But in a multi-OS virtual machine environment, multiple system address spaces
are defined by the hypervisor for guest use. Devices, however, still only see a single
system address space. The IOMMU creates a virtual system address space for
devices and effectively correlates, translates, and sets finite bounds on a device’s
range of addressable memory.

The IOMMU is positioned in the hierarchy of system buses where it can iden-
tify source devices and intercept their memory requests and use its internal
IOMMU page tables to allow/deny and translate the requested memory address.
The power of the IOMMU allows the hypervisor to assign devices to specific
guest operating systems and restrict the devices’ memory access to pages in the
address space of the guest. This IOMMU isolation and mapping feature is used for
PCI-Passthrough.

PCI-Passthrough permits a guest operating system to access a device natively. The
guest OS is not aware that it is being redirected by an IOMMU and does not have
the access or ability to make modifications to the IOMMU chip. Doing so would
open up a huge security hole: for example, OS#2 could program its assigned device

	22    ;login:  VOL. 36, NO. 5

to write to a specific page of memory owned by OS#3 or overwrite a page owned by
the hypervisor.

An IOMMU is somewhat analogous to the MMU used in x86 CPUs for virtual
memory translation. Both IOMMU and MMU use page tables to hold address
translation metadata. And, like the x86 CPU MMU, the IOMMU generates excep-
tions and faults which the hypervisor must catch and resolve.

Intel brands its IOMMU chipset Virtualization Technology for Directed I/O
(VT-d), and AMD brands its chipset as I/O Memory Management Unit (IOMMU).

Conclusion

Virtualization innovations are accelerating and overcoming previous efficiency
limitations. A good understanding of the internal structure is increasingly vital
and will assist in understanding the implications of issues such as performance,
scaling, security, and the proper architecting needs of the virtualization layer in
your infrastructure.

At this point, full virtualization with CPU support will likely be the main focus
of solutions going forward. It provides more flexibility and leverage for hypervi-
sor implementors and more choices for the end user. VMware, XEN, Hyper-V, and
KVM support CPUs that have embedded virtualization capabilities.

References

[1] Gerald J. Popek and Robert P. Goldberg, “Formal Requirements for Virtualiz-
able Third Generation Architectures,” Communications of the ACM, vol. 17, no. 7:
412–421.

[2] en.wikipedia.org/wiki/Popek_and_Goldberg_virtualization_requirements.

[3] Keith Adams and Ole Ageson, “A Comparison of Software and Hardware
Techniques for x86 Virtualization,” 2006: http://www.vmware.com/pdf/
asplos235_adams.pdf.

[4] David Chisnall, The Definitive Guide to the Xen Hypervisor (Prentice-Hall,
2007).

[5] AMD Developer Manuals: http://developer.amd.com/documentation/guides/
Pages/default.aspx.

[6] Intel Processor Developer Manuals: http://www.intel.com/products/processor/
manuals/.

[7] KVM: http://www.linux-kvm.org/page/Main_Page.

[8] XEN: http://www.xen.org/.

[9] Bochs: http://bochs.sourceforge.net/.

[10] http://www.vmware.com/virtualization/.

[11] http://wiki.qemu.org/Main_Page.

[12] Fabrice Bellard, “QEMU, a Fast and Portable Dynamic Translator,” 2005
USENIX Annual Technical Conference: http://www.usenix.org/events/usenix05/
tech/freenix/full_papers/bellard/bellard_html/.

http://wiki.qemu.org/Main_Page

