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Hypervisor and virtualization technology is used to drive cloud computing, server 
consolidation, clustering, and high availability solutions. The x86 processor line 
is now the dominant platform for virtualization. Although the x86 processor has a 
few virtualization challenges, many solutions have been architected. This article’s 
purpose is to briefly explore the principles and operational concepts behind these 
solutions.

VMware, Microsoft Hyper-V, XEN, KVM, and other Linux-based hypervisors are 
among the growing number of popular implementations. Most hypervisors use 
optimized forms of binary translation, paravirtualization, or CPU-supported solu-
tions for full virtualization implementation. 

The Challenges of Virtualization and the Popek and Goldberg 
Principles

Some of the main challenges of x86 virtualization are efficient OS isolation and 
virtualization overhead. Operating systems expect to execute with unchallenged 
privilege in order to support their own internal services and the services they offer 
to user processes. In order to share the x86 CPU with multiple operating systems, 
an intermediary protocol and a privilege mechanism will be needed. Without an 
intermediary, CPU partitioning arrangement, or specialized operating system, 
any attempt to run multiple operating systems would simply bring down the entire 
system.

Other significant problems of virtualization include execution speed, security, 
memory management, multiplexing, and isolation of devices such as network 
cards. 

The Popek and Goldberg principles of virtualization [1, 2] define a set of specifica-
tions for efficient processor virtualization. The standard suggests the ideal models 
and expectations of privileged instructions. Ideal instructions should behave in 
expected ways no matter what the current operating privilege level is and should 
trap any problems. Not all of the x86 processor instruction set meets the Popek and 
Goldberg principles, so an intermediary must be used to resolve the issues regard-
ing the problematic small subset of the entire instruction set of the x86 architec-
ture.
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The Hypervisor/VMM Abstraction as an Intermediary

Hypervisors supervise and multiplex multiple operating systems by using highly 
efficient and sophisticated algorithms. The hypervisor is a well-isolated, addi-
tional but minimal software layer. The hypervisor must work with minimal 
overhead and maintain supervisory privileges over the entire machine at all times. 
The hypervisor seeks to define and enforce strong separation policies and finite 
boundaries for which operating systems can operate cooperatively. 

The x86 processor line uses privilege levels known as rings, and a stand-alone 
hypervisor takes advantage of this fact. By obtaining privilege ring 0, the high-
est privilege level, the hypervisor can supervise and delegate all of the system 
resources. Of course the other operating systems will have to be kicked down to 
lesser privilege levels if the CPU does not support virtualization internally. X86 
processor privilege protections provide the means to completely isolate the hyper-
visor. Often the hypervisor is referred to as a  virtual-machine monitor (VMM), 
and these terms are used in this article interchangeably.

The x86 processor is dependent on lookup tables for runtime management. Global 
tables such as the interrupt descriptor vector and the memory segment descrip-
tors are examples of such structures. Controlling access to these tables is a must 
for any VMM. In a multiplexed OS environment, these and other processor control 
tables are maintained by the hypervisor only and therefore must be emulated for 
each virtual context. In particular, it is the hypervisor’s role to manage all proces-
sor control tables and other processor facilities that cannot be shared in a multi-
plexed OS environment.

Overview of Virtualization Mechanics

Emulation with Bochs

Bochs [9] is a software emulation of a CPU and the various PC chipset components; 
it implements the entire processor instruction set and emulates a fetch, decode, 
and execution cycle the way a physical CPU does. Bochs executes all instructions 
internally by calling its internal functions to mimic the real ones, which never hit 
the CPU. The Bochs emulation engine is implemented as a user-space applica-
tion, and it uses its allocatable memory address space to model a physical memory 
address space.

This type of translation loses the battle when it comes to execution speed. The 
additional overhead of nested memory access, opcode parsing, and execution of 
emulated instructions using procedures in memory results in multiple real proces-
sor instructions for each of the emulated instructions. Bochs is an example of a 
simpler base case of virtualization.

Transition Algorithms and Direct Execution

Translators such as the versions used by VMware’s ESX Server [10] and QEMU 
[11, 12] use intelligent forms of translation. Translators of this type have a huge 
performance advantage over a simpler interpretive type of emulation such as 
Bochs. The basic idea is to translate the source of instructions into a cache of 
instructions that can directly execute on the processor.

Forms of binary translation are intermediary algorithms that are used for pro-
cessors that do not have virtualization support. As stated earlier, the x86 does 
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not meet the standards provided by Popek and Goldberg. There are a few proces-
sor instructions that do not behave in a manner suitable for virtualization. The 
translation process scrubs and replaces problematic instructions with alternate 
instructions that will emulate the original. 

An overly simplified example follows. While in the fetch and decode phase, the 
translator comes across the cli instruction. cli is a privileged instruction that dis-
ables interrupts on a x86 CPU. The translator can instead replace it with instruc-
tions that disable interrupts only on the abstraction that represents the virtual 
CPU for the virtual machine, not the real CPU. Again, this is a basic conceptual 
example to help get the idea of translation across. 

The instructions that have been translated are cached into blocks that are used for 
direct execution on a CPU, and at the end of each translated block are instructions 
that lead back into the hypervisor. Any CPU exception or error that occurs while 
the translated stream is executing forces the CPU back to the hypervisor. This is 
critical for security and isolation; the virtualized operating system has no chance 
of getting control of the CPU, unless the hypervisor itself has been compromised.

Note that VMware has developed a very sophisticated version of binary transla-
tion. The algorithm is called Adaptive Binary Translation [3]. In addition, it is a 
VMM that has features that facilitate mass rollout and management of machines 
such as virtual-machine migration and memory management. QEMU is itself a 
user-space program, while ESX is implemented as a kernel. The advantage is that 
ESX is a hypervisor in the more strict definition which gives it full operational 
range over the processors.

Para-virtualization with XEN

Para-virtualization under XEN [4, 8] provides a software service interface for 
replacing privileged CPU operations. Operating systems must be specifically 
modified to be aware of the services that the XEN hypervisor provides. 

To make an OS XEN-aware, the developer has to modify highly complex kernel 
procedures and replace privileged instructions in the source code with calls to the 
XEN interface which will emulate the operation in its isolated address space. After 
the OS is recompiled against the XEN Interface, a directly executable operating 
system is created. After some administrative setup, XEN can load and schedule 
this OS for direct processor execution. 

The communications gateway that the para-virtualized OS uses to request XEN 
operations is based on interrupts, recast as hypercalls in XEN terminology. Hyper-
calls tie the operating system to the hypervisor. When a hypercall is issued, the 
CPU transfers control to a hypervisor procedure which completes the request in 
privileged mode. This is the same as the system call interface that system pro-
grammers are used to, except the requests are from the kernel to hypervisor. The 
XEN privileged operations exist in an address space only accessible by XEN, and 
this addressing method mimics the kernel/process address space split in standard 
x86_32 processors. 

Hypercalls are used for registering guest local trap tables, making memory 
requests, guest page table manipulation, and other virtual requests. Kernel subsys-
tems such as the slab cache object allocation and threading are not virtualized, but 
devices and page tables are virtualized. A full list of hypercalls can be viewed in 
xen.h in the source tree.
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XEN, which is a stand-alone bare-bones kernel, maintains ultimate control over 
the processor as it is the supervisor of the system and sits isolated in ring 0, and 
the para-virtualized guest OS executes with reduced privileges. While any guest 
OS is executing on a processor, any processor exceptions or errors are trapped and 
handled by the hypervisor, thus providing strong isolation and security. For effi-
ciency, XEN allows Linux to directly handle its system calls (0x80h) while it is on 
the CPU, thus bypassing the XEN layer. This is known as a fast-trap handler.

A XEN para-virtualized guest operating system has a startup and boot-strapping 
procedure that is different from the stand-alone OS. There is no BIOS available 
to query for things such as the installed memory size. XEN provides a special 
table that is mapped into the guest OS address space as a replacement. This is a C 
structure which is called the “start_info” page. The xen.h include file shows the 
specifics of the contents of this structure.

It is generally accepted that para-virtualization provides very good performance. 
The major downside is that the operating system source code must be modified by 
the maker or a third party. This presents a problem for systems, such as the Micro-
soft OS product line, which are not open source. Popular open sourced operating 
systems such as Linux and some versions of the BSD kernels have been success-
fully para-virtualized to run under XEN without CPU-supported virtualization. 
Note that XEN does support CPUs with full embedded virtualization.

Full Virtualization with CPU Supported Extensions 

AMD, Intel, and others have now embedded virtualization properties directly in 
the processor. The advantage of this is that any x86-based operating system can 
execute directly in a virtualized machine context without any binary translation 
or source code modification. AMD calls its virtualization implementation AMD-V, 
and Intel calls its implementation Virtualization Technology (VT).

The AMD and Intel virtualization chipsets support the concept of a guest operat-
ing system and a new additional privilege mode exclusively for hypervisor use. The 
hypervisor executes with full authority over the entire machine, while the guest 
operates fully within its virtual-machine environment without any modification. 
From the guest OS point of view, there are no new or different privilege levels, and 
the guest OS is not aware that it is itself a guest. The usual 0/3 ring setup is main-
tained for the kernel and user processes.

Both AMD and Intel use the key idea of a VMM management table as a data 
structure for virtual-machine definitions, state, and runtime tracking. This data 
structure stores guest virtual machine configuration specifics such as machine 
control bits and processor register settings. Specifically, these tables are known as 
VMCB (AMD [5]) and VMCS (Intel [6]). These are somewhat large data structures 
but are well worth reviewing for educational purposes. These structures reveal 
the many complexities and details of how a CPU sees a virtual machine and shows 
other details that the VMM needs to manage guests. 

The VMCB/VMCS management data structures are also used by the hypervisor to 
define events to monitor while a guest is executing. “Events” are processor-specific 
conditions that can be intercepted, such as attempts to access processor control 
registers and tables. Note that the VMCB/VMCS data structures are only mapped 
into hypervisor-accessible pages of memory. The guest OS cannot be allowed to 
access these tables, as this would violate isolation constraints.
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The triggering of a monitored event is called a VM-EXIT (virtual-machine exit). 
When this happens the CPU saves the current executing state in the active VMCB 
or VMCS and transitions back into the hypervisor context. Here the hypervisor 
can monitor and fix the issue that caused the exit from the guest. Each specific pro-
cessor uses model-specific registers to store the location of VMCB/VMCS tables. 

Any errors, unexpected problems, or conditions that may require emulation that 
occur while the guest is executing force a VM-EXIT and switch to the hypervisor 
host context. This is somewhat similar to the exception/trap transition sequence 
used by x86 processors running standard operating systems.

Note that XEN, VMware, KVM, and Hyper-V support CPU-extended virtualization. 

KVM under Linux

KVM is a very popular Linux-based hypervisor with full virtualization. KVM is a 
kernel module that brings virtualization directly into the host Linux kernel. The 
KVM is not completely stand-alone, as it uses the Linux host kernel subsystems. 
KVM is implemented using CPUs with full virtualization support, along with a 
QEMU software back-end. QEMU provides device emulation for guest operating 
systems under KVM control. I/O requests made to virtual devices are intercepted 
by KVM and queued up to a QEMU instance which is then scheduled for processor 
time in order to complete the request.

One of the differences with KVM is that it uses the host Linux kernel subsystems. 
Guest virtual machines are Linux tasks that execute in processor guest mode. 
KVM supports most operating systems by utilizing CPUs with virtualization sup-
port. See the KVM documentation [7] for the supported list of operating systems.

IOMMU (I/O Memory Management Unit)

IOMMU chipsets are becoming mainstream on x86_64 architectures. An IOMMU 
allows a hypervisor to manage and regulate DMA (direct memory access) from 
devices. In a stand-alone OS environment, a device can access any system memory 
address that it has address lines for. The operating system and its devices see a 
single system memory address space.

But in a multi-OS virtual machine environment, multiple system address spaces 
are defined by the hypervisor for guest use. Devices, however, still only see a single 
system address space. The IOMMU creates a virtual system address space for 
devices and effectively correlates, translates, and sets finite bounds on a device’s 
range of addressable memory.

The IOMMU is positioned in the hierarchy of system buses where it can iden-
tify source devices and intercept their memory requests and use its internal 
IOMMU page tables to allow/deny and translate the requested memory address. 
The power of the IOMMU allows the hypervisor to assign devices to specific 
guest operating systems and restrict the devices’ memory access to pages in the 
address space of the guest. This IOMMU isolation and mapping feature is used for 
PCI-Passthrough. 

PCI-Passthrough permits a guest operating system to access a device natively. The 
guest OS is not aware that it is being redirected by an IOMMU and does not have 
the access or ability to make modifications to the IOMMU chip. Doing so would 
open up a huge security hole: for example, OS#2 could program its assigned device 
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to write to a specific page of memory owned by OS#3 or overwrite a page owned by 
the hypervisor.

An IOMMU is somewhat analogous to the MMU used in x86 CPUs for virtual 
memory translation. Both IOMMU and MMU use page tables to hold address 
translation metadata. And, like the x86 CPU MMU, the IOMMU generates excep-
tions and faults which the hypervisor must catch and resolve. 

Intel brands its IOMMU chipset Virtualization Technology for Directed I/O  
(VT-d), and AMD brands its chipset as I/O Memory Management Unit (IOMMU).

Conclusion

Virtualization innovations are accelerating and overcoming previous efficiency 
limitations. A good understanding of the internal structure is increasingly vital 
and will assist in understanding the implications of issues such as performance, 
scaling, security, and the proper architecting needs of the virtualization layer in 
your infrastructure.

At this point, full virtualization with CPU support will likely be the main focus 
of solutions going forward. It provides more flexibility and leverage for hypervi-
sor implementors and more choices for the end user. VMware, XEN, Hyper-V, and 
KVM support CPUs that have embedded virtualization capabilities.
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