
	 ;login:  OCTOBER 2011     13

Since the mid-1990s I’ve been a member of a distributed multi-generational team
working to secure the Domain Name System. Many ideas and people have come
and gone in the decade and a half since this work began, and the current work in
progress now being deployed represents a dozen kinds of compromises and band-
aids. Yet Secure DNS is being deployed at last, and a market for products and ser-
vices in this technology is starting to appear. I think this is a good moment to try
to remember why securing the DNS seemed like a good idea and to start thinking
about other ways to leverage this fundamental change in Internet architecture.

DNS Itself

The original cost justification for deploying DNS itself was that the old SRI-
NIC:HOSTS.TXT file was growing (hundreds of kilobytes) and updates to this file
were taking a long time (several days) to propagate through the whole Internet.
This file just mapped host names ↔ host addresses so that it would be possible
to enter or view a host’s name even though the underlying Internet architecture
worked in terms of binary addresses. To put all this in context, BSD UNIX systems
in the 1980s used to pull SRI-NIC:HOSTS.TXT once a week with a cron job, run
the “htable” conversion utility to put it into /ETC/HOSTS format, and append a
set of local host names showing local host name ↔ address assignments which
weren’t considered important enough to be worth sending to SRI-NIC.

When Paul Mockapetris designed DNS he gave it a much broader feature set
than host name ↔ address translation. For example, DNS made the MX (mail
exchanger) record possible, meaning that we could begin to send email to domains
rather than to hosts and to have a domain’s incoming mail services be provided
by more than one host. These were exciting times since this kind of distributed
autonomous reliable hierarchical database had never been done before except as
proprietary single-vendor standards. Let the record show, however, that the moti-
vation to deploy DNS was not this broader feature set but only the simple expedient
of getting rid of the SRI-NIC:HOSTS.TXT file. In other words, the reason DNS was
created is broader than the reason DNS was first deployed, and we only have DNS
at all today because there was a reason to deploy it in the first place.

Secure DNS

While each member of the distributed and multi-generational team that developed
Secure DNS can speak for him or herself as to their individual motives for partici-
pating in the effort, I believe that most of us wanted Secure DNS because it would

Other Uses for Secure DNS
P A U L V I X I E

Paul Vixie took over BIND

maintainance after Berkeley

gave it up in 1989, rewrote it,

and then hired other people

to rewrite it again. He has recently hired a

new team to rewrite it again. Paul is Chairman

and Chief Scientist of the Internet Systems

Consortium.

vixie@isc.org

	14    ;login:  VOL. 36, NO. 5

enable a whole new class of distributed applications that could offer enhanced
behavior in the presence of crypto-authentic DNS data. We learned early on that
the BSD ruserok() function and its “.rhosts” file was a terrible idea, since potential
attackers were in direct control of the results of the address → name mapping—
the session initiator controlled the IN-ADDR.ARPA data for their own TCP/IP
source address. In first-generation DNS, all data is potentially under the indirect
control of an attacker since anybody can spoof a DNS response in transit. Since an
application that depended on DNS for any of its access or control plane data could
be no more secure than DNS itself, no applications were allowed to depend on DNS
for sensitive data; as a result, there was no sensitive data in DNS. This made early
DNS a distributed hierarchical autonomous reliable database full of non-sensitive
data—clearly not as useful as it could be.

But whereas the goal for many of us for Secure DNS was to enable a new class of
distributed applications that would be able to depend on crypto-authentic DNS
data, there were then no such applications nor any way to build them. Therefore,
a short-term expedient was needed, something that would cost-justify the design
and deployment of Secure DNS. Most of us realized that the short-term goal had to
be to secure the DNS infrastructure itself against medium-value threats such as
Web or email redirection. Even though attacks of this kind have never really been
common we saw some value in ruling them out altogether. This was for a long time
considered too weak a justification for the great and global expense of deploying
Secure DNS, but in 2008 Dan Kaminsky showed that spoofing DNS responses was
far easier than anybody had thought. After what we called the “2008 Summer of
Fear,” deployment of Secure DNS finally picked up steam. Note, though, that the
justification was still just securing the existing DNS and its existing suite of dis-
tributed applications. We knew we couldn’t sell Secure DNS based on the vaporous
sounding promise of “new applications.”

SSHFP

The award for “first DNSSEC-enabled application” goes to Secure Shell (SSH) for
which a new record type (SSHFP) for host key fingerprints was created. Secure
Shell remembers the host key for every server you’ve talked to in order to prevent
server replacement attacks whereby someone steals a server’s network traffic.
Under normal conditions, when you talk to a new server Secure Shell will prompt
you to verify that server’s host key fingerprint just to make sure that the server
is what you think it is. Many Secure Shell users do not pay much attention to this
prompt and just enter “yes” or click OK or similar without ever reading or verify-
ing the moderately long string of hexadecimal. This creates a security problem
whereby users have higher trust in a Secure Shell session than they have any ratio-
nal justification for, and a server traffic thief can do quite well.

Recent Secure Shell versions now look for an SSHFP record in Secure DNS cor-
responding to the server’s host name. If the result is crypto-authentic in Secure
DNS and matches the server’s offered key, then Secure Shell need not prompt its
user to verify this fingerprint. This may seem like a small thing, especially if it had
to carry the full cost of designing and deploying Secure DNS, but it is an example
of the kind of things that are possible when we can trust the data we get back from
DNS. The full cost of Secure DNS need not be justified by any single new applica-
tion or new feature, and this fingerprint click-through was a legitimate security
concern that could only have been fixed by utilizing a secure global public key
infrastructure such as Secure DNS.

	 ;login:  OCTOBER 2011   Other Uses for Secure DNS    15

X.509 and TLS

Transport Layer Security (TLS) is a way to encrypt TCP/IP session data and pos-
sibly also verify the identity of the host or user at the other end of a TCP/IP session.
Some sessions start out encrypted (as in HTTPS and IMAPS), in which case it’s
called Secure Sockets Layer (SSL). Other protocols can switch from clear text to
encrypted in a negotiated manner, in which case it’s called TLS. As usual in such
systems, each side has a persistent host or user key pair (called a “certificate”)
whose public half is sent to the other side during crypto-negotiation so that the pri-
vate half can be used for generating secure session keys or signatures. The format
of the keying information transmitted during TLS negotiation or SSL startup is
called “X.509” and it contains, among other things, a signature on the certificate
itself by some outside authority. This signature is used to validate the certificate as
belonging to the given host or user. And that’s where it all goes off the rails.

If you buy a certificate from an authority known to the other parties to whom you
wish to speak securely, they can verify the “certificate authority signature” on your
certificate and thus decide to trust the certificate—your certificate—that you’re
presenting to them. The problem is that the “other end” is usually a Web browser
and the maker of that Web browser doesn’t necessarily know which certificate
authorities they should trust, so pretty much (with a few exceptions) everybody
just trusts everybody. Noting the low utility of many certificate authorities, quite
a few Web and mail server operators decide to just use a “self-signed certificate,”
where no certificate authority is involved at all. This results in browser popup
messages warning of self-signed certificates which browser operators (that is,
end users) usually just click through and ignore. To round things out, some recent
incidents have shown lax security or lax verification by certificate authorities such
that a lot of certificates out there probably should not have been issued but will
nonetheless be universally trusted.

The IETF DANE working group has taken on the task of defining a Secure DNS
schema for certificate verification. This will be similar to the Secure Shell SSHFP
record, where the operator of the Web or mail server generates a certificate and
puts the fingerprint of this certificate into Secure DNS, from where it can be
fetched and crypto-authenticated by the other end during TLS negotiation or SSL
startup. Some important questions remain, such as whether this will someday
enable universal self-signed certificates or whether there will always be a market
for “certificate authority” services. What’s absolutely certain is that there is value
in this approach and that Secure DNS—as the first hierarchical autonomous reli-
able distributed public key infrastructure—is what’s going to make it possible.

User Certificates

The Internet has made connectivity almost universal, but there is nothing like a
universal identity system. I don’t mean in an Orwellian “big brother” sense, don’t
worry, I don’t want that either. I’m simply noting that passwords don’t work well at
scale—between one set of people forgetting them and resetting them and another
set of people guessing and leaking them, we know that a system with hundreds of
millions of passwords is inherently not secure and cannot be made secure. In addi-
tion, most of us possess dozens of passwords for different online resources and we
either write them down or make them easy to remember or use the same password
everywhere or never change them or perhaps all of the above. I cannot imagine a

	16    ;login:  VOL. 36, NO. 5

more fruitful electronic crime environment than one in which a billion people do
their online buying and selling and banking using passwords.

Happily, Secure DNS will make it possible for any user to create a crypto-authentic
anchor for their online identity which could then be the basis for a unified, open,
and secure identity system that might in some cases (or on some days or in some
places) use passwords, or fingerprint readers, or signature scanners, or near field
communications readers, or PIN codes, or challenge and response systems, or
whatever those crazy kids in the future will think of. We can’t build a system like
that without a hierarchical autonomous reliable distributed public key infrastruc-
ture. Fortunately, with Secure DNS we now have one of those. In this article, I’m
not describing the specifics of what a unified open and secure identity system
might look like, merely noting that the first task for the designers of such a system
would be to design and deploy something very much like Secure DNS to anchor it
all—unless Secure DNS already exists, in which case they can leverage it.

Your Idea Here

DNS in both its original and its new secure form is like a large whiteboard waiting
for someone to walk by with a compelling idea. I’ve told you mine, but I’m actually
much more interested in hearing what the rest of the distributed systems commu-
nity (that is, Internet application developers and creative investors) can think of.
Before the Internet the world did not have, and no one really imagined the impact
of, universal reachability. Now look. Before Secure DNS the world did not have, and
I think no one really imagines the impact of, universal public key infrastructure.
Let’s find out.

References

RFC 952: “DoD Internet Host Table Specification.”

RFC 4255: “Using DNS to Securely Publish Secure Shell (SSH) Key Fingerprints.”

draft-ietf-dane-protocol-10: “Using Secure DNS to Associate Certificates with
Domain Names for TLS.”

BIND 9.7: “DNSSEC for Humans,” http://www.isc.org/.

